Loop 10 Pipeline – Acid Sulphate Soil and Dewatering Management Plan

February 2006

DBNGP (WA) Nominees Pty Ltd

Parsons Brinckerhoff Australia Pty Limited ACN 078 004 798 and Parsons Brinckerhoff International (Australia) Pty Limited ACN 006 475 056 trading as Parsons Brinckerhoff ABN 84 797 323 433

1 Alvan Street Subiaco WA 6008 PO Box 1232 Subiaco WA 6904 Australia Telephone +61 8 9489 9700 Facsimile +61 8 9380 4060 Email perth@pb.com.au

ABN 84 797 323 433 NCSI Certified Quality System ISO 9001

2145167D PR2:15575:RevC

©Parsons Brinckerhoff Australia Pty Limited and Parsons Brinckerhoff International (Australia) Pty Limited trading as Parsons Brinckerhoff ("PB"). [2004]

Copyright in the drawings, information and data recorded in this document ("the information") is the property PB. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in whole or part for any purpose other than that for which it was supplied by PB. PB makes no representation, undertakes no duty and accepts no responsibility to any third party who may use or rely upon this document or the information.

Author:	Julie Palich
Reviewer:	Alinta Gas/ECOS Consulting
Approved by:	Michael Lambert
Signed:	
Date:	7/2/2006
Distribution:	electronic copies (ECOS, Alinta Gas)

Contents

Page	Number
i ugo	1 Van 10 Of

1.	Intr	oduction	1
	1.1	Background	1
	1.2	Scope of Works	2
2.	Aci	d Sulphate Soil Investigation Methodology	3
3.	Ass	essment Criteria	5
	3.1	pH _F and pH _{FOX} Testing	5
	3.2	Laboratory Analysis	5
		3.2.1 Acid Generating Capacity	5
		3.2.2 Heavy Metals	6
4.	Geo	ology, Hydrogeology and Surrounding Environment	7
	4.1	Geology	7
	4.2	Hydrogeology	7
		4.2.1 Background Water Quality	8
	4.3	Sensitive Receptors	10
5.	Res	sults of Investigation	11
	5.1	Field Results	11
	5.2	Laboratory Results	12
		5.2.1 Acid Generating Capacity	12
		5.2.2 Heavy Metals	13
	5.3	Implications for Acid Generation During Earthworks	14
6.	Aci	d Sulphate Soil Management	15
	6.1	Timing and Duration	15
	6.2	Soil Handling Strategies	15
		6.2.1 Trench Management	15
		6.2.2 Soil Handling	15
	6.3	Contingency Plans	16
	6.4	Reporting	16
7.	Dev	vatering Management	17
	7.1	Dewatering Programme	17
	7.2	Groundwater Neutralisation & Disposal	17
	7.3	Groundwater Quality Monitoring	18
		7.3.1 Performance Criteria	18

8.

Contents (continued)

Page Number

9.	Stat	tement of Limitations	22
8.	Ref	erences	21
	7.5	Reporting	20
	7.4	Contingency Planning	19

List of Tables

Table 2.1:	Soil assessment methodology	4
Table 3.1:	Texture based acid sulphate soils action criteria	6
Table 3.2:	Class II Landfill Acceptance Criteria	6
Table 4.1:	Background Water Quality – Loop 10	9
Table 5.1:	Summary of pH_F and pH_{FOX} results	11
Table 5.1:	Summary of S _{CR} results	12
Table 5.2:	Heavy Metal Concentrations in Soil	13
Table 5.3:	Summary of lithological units that require management	14
Table 7.1:	Performance criteria for groundwater monitoring	19

List of Figures

- Figure 1 Site Location Map
- Figure 2 Soil Bore Locations
- Figure 3 Interpreted Geologic Cross-Section
- Figure 4 Acid Generating Potential of Soil Horizons - Field pH Results
- Figure 5 Acid Generating Potential of Soil Horizons - Laboratory Results

Appendices

- Appendix A Soil Bore Logs
- Appendix B $pH_{\text{F}} \text{ and } pH_{\text{FOX}} \text{ Test Results}$
- Appendix C Laboratory Analysis Results

1. Introduction

Acid sulphate soil is the common name for soil that contains iron sulphides or sulphide oxidation products. When acid sulphate soils are exposed to air and water, the iron sulphides can oxidise to produce sulphuric acid, iron precipitates and groundwater with elevated concentrations of dissolved metals such as aluminium, iron and arsenic. Although these materials are typically benign if left in the natural environment, the dewatering, excavation and/or stockpiling of acid sulphate soils are recognised as a potentially contaminating material by the Department of Environment and therefore require specific consideration and management if present on a development site.

DBNGP (WA) Nominees Pty Limited is proposing to construct a 23 km looped pipeline (Loop 10) adjacent (and connected) to the existing underground gas transmission pipeline within the Dampier to Bunbury Natural Gas Pipeline (DPNGP) corridor (Figure 1). According to the WA Planning Commission (WAPC) Bulletin No 64, the pipeline route passes through areas classified as having a LOW to HIGH risk of containing acid sulphate soils. A desktop assessment along the length of the pipeline was undertaken in June 2005 (PB, 2005) using both regional and site-specific information to refine the WAPC mapping. The results of the desktop assessment indicated the following risk of acid sulphate soils was likely to be encountered along the Loop 10 pipeline:

- 10 km, located at the north end of the pipeline, were ranked as LOW risk, consistent with the WAPC mapping;
- 9.4 km, located between KP3 and KP4 and south of KP11, were ranked as MEDIUM risk;
- 1.9 km, located intermittently south of KP11, were ranked as HIGH risk.

Parsons Brinckerhoff was commissioned by Ecos Consulting in June 2005 to undertake a Preliminary Acid Sulphate Soil Investigation over those areas ranked as MEDIUM and HIGH risk. The objective of the investigation was to determine if acid generating soils are present along the pipeline route and to delineate their extent to assist in the development of the Environmental Management Plan (EMP) for the project. Consistant with the WAPC requirements, further investigation was not required in association with those areas ranked as having a LOW risk. In addition, PB were commissioned to prepare an acid sulphate soil and dewatering management plan to mitigate potential impacts associated with the disturbance of soils along the pipeline route.

1.1 Background

Installation of the Loop 10 pipeline will involve the excavation of a trench 23 km long, 1.5 to 2 m deep and approximately 2 m wide, resulting in the disturbance of approximately 92,000 m^3 of soil. Where possible the excavated soils will be reused to backfill the trenches once the pipeline has been laid.

In addition, dewatering may be locally required to drop the water table sufficiently to open the trench. Based on regional information on the topography and the depth to water in the area, it is anticipated that dewatering may be locally required in some low-lying areas during the excavation of the of the pipeline trench, dependant upon the time of year that earthworks are undertaken.

1.2 Scope of Works

Based on PB's understanding of the issue, the recommendations put forth in the Department of Environment's *Acid Sulfate Soil Guideline Series* (2003/2004) and PB's understanding of the current regulatory requirements of the Department of Environment (DoE), the following scope of works comprised the preliminary investigation of the Loop 10 Pipeline:

- 1. Preparation of a Health, Environment and Safety Plan (HESP) including a risk assessment for the on-site investigation;
- 2. Installation of 69 soil bores to depths up to 3 m and collection of up to 897 soil samples;
- 3. Field pH (pH_F) and pH after oxidation (pH_{FOX}) testing of the samples;
- 4. Submission of 126 samples to Australian Laboratory Services (ALS) for laboratory analysis of using the Chromium Reducible Sulphur Suite;
- 5. Interpretation of results;
- 6. Provision of this report, which includes the findings of the preliminary investigation and management strategies for soil handling and dewatering.

2. Acid Sulphate Soil Investigation Methodology

A site investigation for acid sulphate soils was undertaken between KP3 and KP4 and between KP11 and KP22.7 in October/November 2005 following a one-week dry period that occurred in late October after a prolonged period of unseasonably wet weather.

Although classified as LOW risk by the WAPC mapping, the soils between KP3 and KP4 were investigated because regional mapping indicated that wetlands existed within 1 km of the pipeline easement. Due to the scale of mapping it was considered possible that the wetlands may extend further than suggested.

The soils between KP11 and KP22.7 were investigated because WAPC mapping and the desktop assessment identified the soils as having a MEDIUM and HIGH risk of being acid generating. In particular, the following areas were identified as having a HIGH risk of being acid generating:

- 100 m between KP12.4 and KP12.5;
- 100 m between KP14.5 and KP14.6;
- 1400 km between KP 17.2 and KP18.6;
- 100 m between KP 19.9 and KP 20; and
- 200 m between KP22.5 and KP22.7.

The soil investigation for both areas included:

- Installation of 69 auger holes to a maximum depth of 3 m. Those bores installed to a depth less than 3 m either encountered refusal or collapsed during installation due to a shallow water table;
- Sampling of soils at 0.25 m intervals (where recovery of sample was possible);
- Analysis of 545 soil samples for field pH (pH_F) and field peroxide pH (pH_{FOX}) using recognised methods; and
- Submission of 126 samples to Australian Laboratory Services (ALS) for laboratory analysis of using the Chromium Reducible Sulphur Suite;
- Submission of 24 samples for analysis of Al, As, Cd, Total Cr, CrVI, Fe, Pb, Mo, Ni, Se and leachability of Pb and Ni.

Soil bore locations are provided in Figure 2 and soil bore logs are provided in Appendix A. Table 2.1 summarises the methodology adopted during the fieldwork for the assessment of soils.

Activity	Details		
Services Location	Site plans, including services locations were inspected prior to drilling. An NPS Supervisor provided clearances for bore installation locations.		
Soil Bore Installation69 hand augered soil bores were installed at interval approximately 200 m through the MEDIUM risk area 100 m intervals through those areas identified as HIL Soil bores were installed to 3 mBGL except where b occurred due to high water table levels. Installation using a drill rig was deemed unsuitable due to the ri in such close proximity to the high pressure gas pip the risk of disturbing EPP vegetation.			
Soil Logging	Soil and rock type classification based on AS1726 – 1993.		
Soil Sampling	Soil samples were obtained from the auger head and preserved in airtight plastic bags.		
Soil Field pH Testing	$\rm pH_F$ and $\rm pH_{FOX}$ was measured using the soil paste method. (Watling et al, 2004)		
Laboratory Sample Selection	126 samples were selected for analysis using the Chromium Reducible Sulphur Suite based on field results. The 126 samples comprised: the highest potential acid generating soil from each bore, soils samples at 0.5 m intervals for 1:10 soil bores installed in the MEDIUM risk areas, and soils samples at 0.5 m intervals for 1:5 soil bores installed in the HIGH risk areas		
Soil Bore Abandonment	Auger holes were backfilled post sample collection and logging.		
Sample Preservation Samples were stored in airtight plastic bags on ice while and whilst in transit.			

Table 2.1: Soil assessment methodology

3. Assessment Criteria

3.1 pH_F and pH_{FOX} Testing

In the Draft Acid Sulphate Soil Guidelines Series (2003), the Department of Environment (DoE) has provided guidelines defining indicator field pH values for pH_F and peroxide pH (pH_{FOX}) to assist with identifying likely acid generating soils.

As a general rule of thumb, soils are considered to contain some actual acidity (oxidised sulphide material and / or organic acids dependent on the sample depth) if their pH is less than 4 and may contain actual acidity if their pH is between 4 and 5. Potential acidity (unoxidised sulphide material), or the ability of a material to generate acid is determined through the pH_{FOX} test. As a general rule of thumb, soils are considered to contain potential acidity if their pH_{FOX} is less than 3 or if the difference between pH_F and pH_{FOX} is greater than 1.

3.2 Laboratory Analysis

3.2.1 Acid Generating Capacity

Western Australia's *Draft Acid Sulphate Soil Guidelines* (2003) have established action criteria for the assessment of the environmental risk of acid sulphate soils. The action criteria are based on the sum of existing plus potential acidity, calculated as equivalent sulphur (e.g. s-TAA +S_{CR} in %S units) or equivalent acidity (e.g. TAA +TPA in mol H^+ /tonne).

As clay content tends to influence a soil's natural pH buffering capacity, the action criteria are grouped by three broad texture categories – coarse, medium and fine. The criteria are used to define when acid sulphate soils disturbed at a site will need to be treated and managed. Table 3.1 summarises the action criteria.

Type of Material		tonnes o	teria if <1,000 of material is turbed	Action Criteria if >1,000 tonnes of material is disturbed		
Texture Range	Approx. Clay Content	Equivalent Sulphur (%)	Equivalent Acidity (mol H⁺/tonne)	Equivalent Sulphur (%)	Equivalent Acidity (mol H⁺/tonne)	
Coarse – sands to loamy sands	≤5%	0.03	18	0.03	18	
Medium – sandy loams to light clays	5 – 40%	0.06	36	0.03	18	
Fine – medium to heavy clays and silty clays	≥40%	0.1	62	0.03	18	

3.2.2 Heavy Metals

Potential disposal of soils to an off-site facility will require verification of heavy metals concentrations for landfill classification. As the minimum landfill class for acid sulphate soils is Class II, heavy metals concentrations in soil are compared against the *Guidelines for Acceptance of Solid Waste to Landfill* (DoE, 2005). The relevant criteria are summarised in Table 3.2.

Parameter	CT2 (mg/kg)	ASLP2 (mg/L)	CL2 (mg/kg)
Al	-	-	-
As	14	0.5	500
Cd	0.4	0.1	100
Total Cr	-	-	-
CrVI	10	0.5	500
Fe	-	-	-
Pb	2	0.5	1,500
Мо	10	0.5	1,000
Ni	4	0.2	3,000
Se	2	0.5	50

 Table 3.2: Class II Landfill Acceptance Criteria

4. Geology, Hydrogeology and Surrounding Environment

The following discussion on the geology and hydrogeology of the site is derived from the site specific information collected between KP3 and KP 4 and KP11 and KP22.7 during the investigations undertaken at the site. A geologic cross-section of these segments of Loop 10 is provided as Figure 3.

4.1 Geology

The Loop 10 alignment between KP3 and KP4 is characterised topsoil containing some organics underlain by yellow brown to orange coarse grained sands. With the possible exception of the organic topsoils, the soils encountered over this area showed no visually characteristic signs of being acid sulphate soils. Further, the soil types suggest that the wetlands surrounding the easement in this area, have not recently encompassed this interval of the pipeline.

The Loop 10 alignment between KP11 and KP 22 is characterised by undulating hills generally underlain by sands and silts. The following lithologic units were identified:

- TOPSOIL: grey to dark brown soils with some organic matter;
- YELLOW SAND: medium to coarse grained, yellow to white, quartz-rich sands;
- GREY SAND: medium grained, pale grey sand with no apparent organics;
- BROWN SAND: medium grained, pale brown sand;
- SILTY SAND: medium to fine grained, brown/black sands in a silt matrix;
- SILTY CLAY: firm to very firm, brown to brown black silty clays
- CLAY: firm, pale blue grey clay;
- LIMESTONE: coarse-grained and cemented with friable clay, pale white/yellow; and
- PEAT: organic rich, black sandy silts;

Lithologies such as the clay, peats and limestone were locally encountered over distances typically not exceeding 500 m. Other lithologies (sands and clays) were more laterally extensive with silty clay units prevailing between KP10 and KP14 and grading into more sand-dominated stratigraphic sequences form KP14 to KP22.7 along the alignment.

4.2 Hydrogeology

Groundwater was not encountered between KP3 and KP4 suggesting that the depth of groundwater in this area is greater than 3 mBGL and that dewatering of this section of the loop will not be required during construction.

Between KP11 and KP22.7 the following hydrogeologic conditions prevailed:

- Between KP11 and KP14.6 groundwater was generally not encountered at depths less than 1.5 m and in most cases groundwater was not encountered within 2 mBGL;
- Between KP14.6 and KP16.8 groundwater was encountered between 0.7 m and 1.2 mBGL. Due to the presence of a shallow silty horizon through this area, it is likely that the depth to groundwater reflects a perched aquifer system;
- Between KP16.8 and KP18 groundwater was generally encountered at a depth of approximately 1.5 mBGL;
- Between KP18 and KP19.6 groundwater was encountered at depths less than 1 mBGL;
- Between KP19.6 and KP20.8 groundwater was not encountered in the top 3 m of the soil profile; and
- Between KP20.8 and KP22.7, groundwater was generally encountered at depths less than 1 mBGL.

It is noted that in areas where the depth to groundwater is less than 1 mBGL, dewatering may be required for the installation of the pipeline. However, the necessity for dewatering will be dependent upon the presence or absence of silty horizons (where silty horizons are present dewatering may not be required) and the time of year at which the work is undertaken. It is noted that at the time of the investigation, groundwater table levels would be near their seasonal maximum and will generally decrease through to April.

Due to the sand nature of most of the soils, which promoted bore collapse, it was not possible to sample water quality from the soil bores.

4.2.1 Background Water Quality

Background water quality was obtained on 10 January 2006 from six piezometers installed along Loop 10 in the three areas where dewatering may be required. The locations of the six piezometers are shown in Figure 2.

Table 4.1 summarises the background water quality along the pipeline route. Laboratory certificates are provided in Appendix C. It is noted that a high level of sediment was present in association with all water samples that inhibited the ability for field filtration. Samples were kept on ice after sampling and were delivered to the analytical laboratory within 3 hours of sampling.

Parameters	Performance Criteria ¹	PZ1	PZ2	PZ3	PZ4	PZ5	PZ6
Depth to Water (mBGL)	-	0.84	2.0	2.0	0.85	1.43	0.95
pH (pH units)	6	3.63	4.4	4.25	3.97	6.65	6.19
EC (µs/cm)	2000	1180	500	487	153	455	322
TDS	-	1620	518	550	250	635	615
Alkalinity	-	<1	<1	<1	<1	159	50
Acidity	-	505	196	92	56	76	24
Acidity - Alkalinity	35	505	196	92	56	-83	-26
H_2S	0.5	<0.1	0.2	<0.1	<0.1	1.2	0.2
SO ₄	-	36	27	24	3	40	<10
CI	-	320	96.4	101	38.3	43.2	68.8
SO4/CI	0.5	0.11	0.28	0.24	0.08	0.93	0.14
NH ₃ -N	-	<0.010	0.328	0.107	0.14	0.158	0.107
Total Al	-	4.12	8.22	59.2	1.56	633	99
Total Fe	-	8.17	5.48	41.5	5.26	326	77.4
Al	0.2	2.8	1	1.54	0.82	0.02	0.35
As	0.007	0.001	<0.001	<0.001	<0.001	0.007	0.001
Cd	0.002	0.0001	0.0009	0.0014	0.0001	<0.0001	<0.000
Cr	0.1	0.003	0.001	0.001	0.001	<0.001	0.002
Fe	0.3	4.42	0.16	0.14	3.99	<0.05	5.13
Mn	0.5	0.027	0.639	0.577	0.02	0.586	0.164
Ni	0.02	0.008	0.02	0.012	0.006	0.005	0.008
Se	0.01	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Zn	3	0.053	0.087	0.096	0.052	0.008	0.009

Table 4.1: Background Water Quality - Loop 10

1. Drinking Water Quality Guidelines (DoE, 2003)

Note: all values reported in units of mg/L unless otherwise specified

Results of the background water quality testing indicate the following:

- Groundwater is acidic between KP18 KP19.6 and KP20 .8 KP22.7 as evidence by low pH and a net acidity that exceeds 35 mg/L;
- Acidity is likely to be due to metals acidity as the sulphate:chloride ratios indicate a lack of sulphate acidity;
- Total Fe and Al concentrations are significantly elevated in all bores;
- Dissolved Al, Fe and Mn concentrations are significantly elevated in several of the bores above the performance criteria;
- No other heavy metals were present in concentrations that exceed the performance criteria.

Based on the results, management of acidity and heavy metals will be necessary in all potential areas of dewatering.

4.3 Sensitive Receptors

The sensitivity of environmental receptors located along and around the Loop 10 pipeline is discussed in detail in the Assessment on Referral Information (ARI) document (Ecos, 2005). In particular the following receptors are located within 1 km of the Loop 10 pipeline easement:

- Residential and rural residential properties to the east and west of the pipeline;
- Folly's Pool located around KP13;
- Hymus Swamp located immediately to the west of KP19;
- The Leda area, which is recognised as an ESA (environmentally significant area); and
- Several other unnamed, seasonal damplands located throughout the southern portion of the area that have not been classified as having environmental significance.

5. **Results of Investigation**

5.1 Field Results

Results of the field pH (pH_F) and field pH after oxidation (pH_{FOX}) tests are summarised by lithology in Table 5.1.

Lithology	No. of Samples	pH _F Range	pH _{FOX} Range	% Samples ∆pH _{F-FOX} >1
TOPSOIL	64	3.1 – 8.7	1.6 – 6.5	40
ORGANIC SANDS	13	4.2 - 8.1	3.7 – 5.9	23
YELLOW SAND	149	3.8 - 8.3	2.8 - 6.0	16
ORANGE SAND	21	6.0 - 8.2	5.2 - 6.7	43
GREY SAND	91	3.8 - 8.4	3.4 - 8.4	8
BROWN SAND	21	3.8 - 5.2	3.6 – 5.9	4
SILTY SAND	76	4.4 - 8.8	3.5 – 8.6	26
SILTY CLAY	47	2.8 - 8.0	1.4 - 6.9	66
CLAY	11	6.8 - 8.3	6.1 – 7.9	0
LIMESTONE	19	6.9 - 9.1	5.8 – 7.6	74

Table 5.1: Summary of pH_F and pH_{FOX} results

The following conclusions can be drawn from the field test data:

- Although a large pH range is noted in several of the lithological units, the maximum pH_F and pH_{FOX} values tend to correlate with areas underlain by limestone materials and likely reflect a mixing of the units that has provided some neutralising capacity to the overlying units. Excluding these samples the range of pH_F and pH_{FOX} values tends to be on the order of 2 pH units;
- With the exception of the orange sand, grey-blue clay and limestone units, field pH tests suggest that some actual acidity may be present in the soils;
- With the exception of the silty clay lithology, and 2 samples located within the yellow sand unit and below the water table around KP17, pH_{FOX} values exceed a value of 3, suggesting an absence in potential acidity in most soil units; and
- ΔpH values were statistically high in the topsoil, silty clay, orange sand and limestone units. The elevated ΔpH values in the topsoil unit are likely to be reflective of the presence of organic acid whereas the elevated ΔpH values in the silty clay are consistent with the pH_F and pH_{FOX} results indicating that sulphidic acidity is likely to be present in these soils.

5.2 Laboratory Results

5.2.1 Acid Generating Capacity

Laboratory analysis using the Chromium Reducible Sulphur Suite (S_{CR}) was undertaken on 126 samples. Based on the results of the field testing, the highest risk sample from each bore was analysed as were complete soil profiles for at least every 1:10 bores. Table 5.2 summarises the laboratory results by lithology

Lithology	No. of	Acid Generat	ing Capacity	
	Samples	%S	mol H⁺/tonne	
TOPSOIL	18	< 0.02 - 0.1	<10 - 62	
ORGANIC SANDS	6	<0.02	<10	
YELLOW SAND	39	< 0.02 - 0.04	<10 - 28	
ORANGE SAND	3	<0.02	<10	
GREY SAND	17	<0.02	<10	
BROWN SAND	3	<0.02	<10 - 11	
SILTY SAND	22	<0.02-0.06	<10 - 41	
SILTY CLAY	12	< 0.02 - 0.49	<10 - 304	
CLAY	4	<0.02	<10 - 13	
LIMESTONE	6	<0.02	<10	

Table 5.1: Summary of S_{CR} results

Based on the laboratory analysis, the following conclusions were drawn:

- The organic sands, orange sands, grey sand, brown sand, blue-grey clay and limestone lithologies are not acid generating with none of the samples exhibiting detectable levels of sulphides;
- With the following exceptions, the majority of the topsoil is not acid generating:
- 200 m of topsoil located between KP18.7 and KP18.9 (bore 10-43) that has a low acid generating capacity of 0.4%S (23 mol H⁺/tonne);
- Topsoil in the lowlying area between Baldivis Rd and the Kwinana Freeway (KP11 to KP12). This soil also has a low acid generating capacity with sulphide concentrations of 0.05%S (33 mol H⁺/tonne); and
- Topsoil located above the brown/black silty clay unit between KP12 and KP13.4 may be locally acid generating with sulphide present at concentrations up to 0.1%S (60 mol H+/tonne).
- Where topsoil is noted as acid generating, all acidity is present as actual acidity indicating that the sulphides have fully oxidised;
- One sample within the yellow sand unit (10-35 2.25m) was identified as being acid generating. This sample exhibited a low acid generating capacity (0.04%S and 28 mol H+/tonne) and is located both below the depth of excavation and the water table;

- Silty sands in the area between Baldivis Rd and the Kwinana Freeway (KP11 to KP12) exhibits a low acid generating capacity with maximum sulphide concentrations of 0.04%S (26 mol H⁺/tonne). The acidity in this unit is present entirely as actual acidity indicating that the sulphides have fully oxidised, likely due to the seasonally fluctuating water table;
- The silty clay unit between KP12 and KP13.4 is found to have a moderate to high acid generating capacity with a maximum observed sulphide concentration of 0.49%S (304 mol H⁺/tonne). Both actual and potential acidity are present in the unit with actual acidity dominating in the shallow soils and potential acidity dominating at depth.

5.2.2 Heavy Metals

Table 5.2 summarises the results of the heavy metals analysis undertaken on the acid generating lithologies located between KP12.1 and KP13.4 (topsoil and silty clay). Laboratory certificates are provided in Appendix C.

Parameter	CT2 (mg/kg)	ASLP2 (mg/L)	CL2 (mg/kg)	Concentration Range (mg/kg)	ASLP Leachability Range (mg/L)
Al	-	-	-	9,350 – 39,800	NA
As	14	0.5	500	<5	NA
Cd	0.4	0.1	100	<1 - 1	NA
Total Cr	-	-	-	33 - 145	NA
CrVI	10	0.5	500	NA	<0.01
Fe	-	-	-	8,020 - 28,700	NA
Pb	2	0.5	1,500	8 – 37	<0.1
Мо	10	0.5	1,000	<2 - 2	NA
Ni	4	0.2	3,000	5 – 18	<0.1 – 0.3
Se	2	0.5	50	<5	NA

Table 5.2: Heavy Metal Concentrations in Soil	Table 5.2:	Heavy	Metal	Concentrations	in	Soil
--	------------	-------	-------	----------------	----	------

Results of the heavy metals analysis indicate that the soils are suitable for disposal to Class II landfill.

5.3 Implications for Acid Generation During Earthworks

Management of acid sulphate soils is required where the soils are to be disturbed. For the installation of the Loop 10 pipeline, disturbance of soil will occur due to its excavation from the trench and potentially through dewatering. It is understood that the pipeline will be bored underneath the Kwinana Freeway between KP11.7 and KP12.1 and therefore soils in this interval will not be disturbed. Excavation works proposed during the construction process will not occur below depths of 2 mBGL. Dewatering drawdown, where necessary, is not expected to impact soils below 2.5 mBGL. Based on the results of the field and laboratory analysis, Table 5.3 summarises the units that will require acid sulphate soil management along Loop 10.

Unit Description	Location	Depth of Unit	Type of Impact	Volume of Soil to be Excavated
Topsoil and silty sands	KP11 – KP11.7	0 – >2 m	Excavation & Dewatering	2,800 m ³
Topsoil and silty clay	KP12.1 – KP13.4	0 - >3m	Excavation	5,170 m ³
Yellow Sand	KP17.1 – KP17.4	>2m	Dewatering	NA
Topsoil	KP18.7 – KP18.9	0 – 0.25 m	Excavation	100 m ³

 Table 5.3: Summary of lithological units that require management

It is unlikely based on the current depth of the water table that dewatering will be required for the installation of the pipeline between KP17.1 and KP17.4. As a result disturbance of the acid generating soils in this area is unlikely.

6. Acid Sulphate Soil Management

Appropriate management of the acid generating soils will be essential to ensure that there are no adverse impacts to the sensitive receptors in the area. The following management practices will be implemented to minimise the risks associated with the disturbance of acid sulphate soils.

6.1 Timing and Duration

The timing for the earthworks for the excavation of the Loop 10 Pipeline is planned to occur during Q1 2006. This timing has been chosen to take advantage of low water table levels.

The total project duration is expected to be approximately 45 days, with earthworks undertaken in the acid sulphate soil areas expected to take up to 10 days.

6.2 Soil Handling Strategies

6.2.1 Trench Management

It is understood that the trench will be opened in 7 km segments and that each segment may be left open for up to 14 days.

In order to minimise the risk of oxidation of acid sulphate soils that may remain on the walls and floor of the excavation, the segments of the trench requiring excavation between KP11 and KP13.4 will be excavated in lengths that permit opening and closing of the trench within a period of 48 hours.

6.2.2 Soil Handling

The following soil handling strategies will be adopted during the excavation programme:

- The topsoil and silty sands excavated from the trench between KP11 and KP11.7 will be layered with sufficient neutralising material within the trench. The amount of neutralising material will be calculated assuming a sulphur concentration of 0.05%S. Assuming an ENV for the neutralising material of 95% this equates to a lime dosing rate of 2.5 kg lime/tonne of soil (a total of 14,000 kg aglime). The soils will be layered with the neutralising material by placing one quarter of the total required lime at the based of the trench, backfilling with 0.5 m of the soil, and repeating the process of emplacing a layer of lime beneath the sands to the surface;
- The topsoil and silty clay excavated from the trench between KP12.1 and KP13.4 will be excavated and disposed to a landfill with a minimum Class II rating. The trench will then be backfilled with clean sand or lime sands;
- The topsoil excavated from the trench between KP18.7 and KP18.9 will immediately underlain with aglime or lime sands when used as backfill in the trench. The amount of neutralising material will be calculated assuming a sulphur concentration of 0.4%S.

Assuming an ENV for the neutralising material of 95% this equates to a lime dosing rate of 2 kg lime/tonne of soil (a total of 550 kg aglime);

- All other units excavated from the trench will be used as backfill material in the trench and do not require treatment before reuse;
- The amount of lime to be used for neutralisation will be calculated using the following equation:

Lime required (kg/CaCO₃/tonne untreated topsoil) = (%S x 30.59) x (1.5/ENV)

where:

%S is the maximum actual acidity detected in the samples, and

ENV is the effective neutralising value of the lime (expressed as a decimal percent) as quoted by the supplier.

 If acid sulphate soils are to remain untreated for a period longer than 48 hours they will be stockpiled on a compacted lime pad, 300 mm thick. Lime bunding (to 500 mm) will be erected around the edges of the stockpile.

6.3 Contingency Plans

- CONTINGENCY PLAN 1: If any soils are encountered during excavation works that are not representative of the material sampled during the acid sulphate soil investigation, these soils will be treated as acid generating and lime dosed assuming a sulphide concentration of 0.1%S.
- CONTINGENCY PLAN 2: If an ENV provided with the neutralising material is not provided, 1 sample for every 500 m³ of lime will be sampled and analysed for Calcium Carbonate Equivalence by a NATA accredited laboratory to determine the ENV of the material.

6.4 **Reporting**

The Department of Environment will be sent a letter report confirming the neutralisation of treated soils at the conclusion of the excavation programme. This report shall include:

- Volumes of neutralising agent brought to site;
- Volumes of soils treated, timeframe of treatment; and
- Photographs demonstrating the soil management process to confirm adherence to the management plan.

7. Dewatering Management

As groundwater in some areas is already acidic, appropriate management of the groundwater during dewatering will be essential to ensure that there are no adverse impacts to the sensitive receptors in the area. The following management practices will be implemented to minimise the risks of acid generation associated with dewatering.

7.1 Dewatering Programme

The essential components of the proposed dewatering programme are:

- Dry excavation of soils to the water table;
- Potential localised drawdown of the water table to a maximum depth of 0.5 m below the base of the trench along segments of the pipeline in low-lying areas. The possible areas of dewatering include:
- Dewatering between KP14.6 and KP16.8 where groundwater was encountered between 0.7 m and 1.2 mBGL. It is noted that groundwater in this area reflects a perched aquifer system and that may be seasonally absent. Water levels collected in January 2006 suggest that dewatering in this area is possible but unlikely;
- Between KP18 and KP19.6 where groundwater was encountered at depths less than 1 mBGL. Dewatering in this area will only need to occur if the trench cannot hold itself open;
- Between KP20.8 and KP22.7 where groundwater was generally encountered at depths less than 1 mBGL. Dewatering in this area will only need to occur if the trench cannot hold itself open;
- Where necessary, treatment of the water through a lime treatment unit and disposal to the environment as appropriate.

7.2 Groundwater Treatment & Disposal

The following groundwater neutralisation and disposal practices will be undertaken:

- Where groundwater exceeds the pH or total titratable acidity performance criteria defined in Section 7.3.1, groundwater will be neutralised through an in-line mobile lime dosing plant with automated pH adjustment (to pH 6.5 8.0) prior to disposal. The neutralisation of the effluent prior to disposal will reduce the mobility of heavy metals during reinfiltration;
- Due to elevated concentrations of AI and Fe in all areas of potential dewatering, dewatering effluent will be passed through a mobile wastewater filtration unit with adequate retention time to precipitate heavy metals;
- Following treatment, disposal of groundwater will be undertaken using a combination of the following methods:

- In the first instance for the purpose of dust suppression;
- In the second instance dewatering effluent will be reinfiltrated to ground within the pipeline easement.

7.3 Water Monitoring

The following routine groundwater monitoring will be undertaken in areas where dewatering occurs:

- Cumulative flow will be estimated and recorded daily;
- The discharge area will be visually inspected daily to ensure that flooding of the ground beyond the easement does not occur and to monitor for the presence or absence of iron precipitates;
- Two temporary piezometers installed (one up-gradient, one down-gradient) within the expected area of groundwater drawdown in areas where drawdown occurs (PZ1/PZ2, PZ3/PZ4, and PZ5/6). Measurements of standing water level, total titratable acidity, pH, EC and DO will be performed daily during the works on relevant piezometers and at the discharge outlet to the pump;
- Laboratory analysis of total acidity, total alkalinity, pH, sulphate, chloride, dissolved aluminium (filtered), total aluminium, dissolved arsenic (filtered), dissolved chromium (filtered), dissolved cadmium (filtered), total iron, dissolved iron (filtered), dissolved manganese (filtered), dissolved nickel (filtered), dissolved zinc (filtered), dissolved selenium (filtered), ammoniacal nitrogen, hydrogen sulphide, EC and TDS will be carried out at the conclusion of dewatering in each area.
- After completion of the works, groundwater monitoring of relevant piezometers from areas of dewatering, including laboratory analysis, will continue on a monthly basis for 3 months to determine whether there are any long-term impacts to groundwater from dewatering.

7.3.1 Performance Criteria

Table 7.1 summarises the performance criteria that will be adopted for the site during the monitoring programme.

Acceptable Threshold	Exceedance Triggering Contingency Plan		
SWL	>0.2 m drawdown on easement boundary		
pH > 6.0 (effluent)	pH < 6.0 (effluent)		
$\Delta pH<0.5$ in one week (groundwater bores)	ΔpH >0.5 in one week (groundwater bores)		
EC< 2000 μS/cm	EC>2000 μ S/cm AND pH or TA exceed acceptable threshold		
TSS < 100 mg/L	TSS >100 mg/L		
TA (Total Acidity-Total Alkalinity) < 35 mg/L	Total Acidity-Total Alkalinity > 35 mg/L		
SO ₄ /CI<0.5	SO ₄ /CI>0.5		
H ₂ S< 0.5 mg/L	H ₂ S> 0.5 mg/L		
Fe < 0.3 mg/L	One or more metals exceed acceptable		
Cd < 0.002 mg/L	threshold by 10x or exceeds background concentrations by 10% where background concentration already exceeds adopted threshold.		
Cr < 0.1 mg/L			
Mn < 0.5 mg/L			
Al < 0.2 mg/L			
As < 0.007 mg/L			
Ni < 0.02 mg/L			
Se < 0.01 mg/L			
Zn < 3.0 mg/L			

 Table 7.1:
 Performance criteria for groundwater monitoring

7.4 Contingency Planning

- CONTINGENCY PLAN 1: If reinfiltration of dewatering effluent results in visible accumulations of iron precipitates or results in flooding of the ground surface beyond the pipeline easement, dewatering effluent will be reinfiltrated through an above ground infiltration basin contained within the easement. The base of this infiltration basin will be validated at the completion of its use, and if necessary soil impacted by heavy metal precipitates will be disposed to landfill.
- **CONTINGENCY PLAN 2:** If neutralised effluent does not meet the performance criteria outlined in Section 7.3.1, dewatering effluent will be disposed off-site, except in the case of elevated TSS whereby a sand filter will be fitted to the discharge pipe.
- **CONTINGENCY PLAN 3:** If groundwater results indicate a deterioration of groundwater quality over the long-term for reasons directly attributable to dewatering, an appropriate soil investigation will be undertaken to determine the source of acidification and a groundwater and soil management strategy will be prepared.

7.5 Reporting

The Department of Environment Regional Operations (Mandurah Office) will be sent water quality results on a weekly basis with a brief interpretation of results and will be provided with a summary report at the conclusion of the 3 month groundwater monitoring programme.

8. References

- DoE, 2004, *Identification and Investigation of Acid Sulfate Soils*, Acid Sulfate Soil Management Series.
- DoE, 2004, *Guidance for Groundwater Management in Urban Areas on Acid Sulfate Soils*, Acid Sulfate Soil Management Series.
- DoE, 2004, *Treatment and Management of Disturbed Acid Sulfate Soils*, Acid Sulfate Soil Management Series.
- DoE, 2004, *Preparation of Acid Sulphate Soil Management Plans*, Acid Sulfate Soil Management Series.
- Ecos, 2005, *DBNGP Looping 10 Project Assessment of the Referral Information (ARI) Summary.* Prepared for DBNGP (WA Nominee Pty Ltd), November 2005.
- Parsons Brinckerhoff, 2005, *DBNGP Looping 10 Acid Sulphate Soil Risk Classification and Preliminary Site investigation Sample and Analysis Plan.* 2145167A/PR2:14476:RevB.
- Watling,K.M, Ahern, C.R., and Hey, K.M., 2004, Section H: acid sulfate soil field pH tests. In Acid Sulfate Soil Laboratory Methods Guidelines (Eds CR Ahern, AE McElnea, LA Sullivan), Department of Natural Resourses, Mines and Energy, Indooroopilly, Queensland, Australia.

9. Statement of Limitations

Scope of Services

This environmental site assessment report ("the report") has been prepared in accordance with the scope of services set out in the contract, or as otherwise agreed, between the Client and Parsons Brinckerhoff (PB) ("scope of services"). In some circumstances the scope of services may have been limited by a range of factors such as time, budget, access and/or site disturbance constraints.

Reliance on Data

In preparing the report, PB has relied upon data, surveys, analyses, designs, plans and other information provided by the Client and other individuals and organisations, most of which are referred to in the report ("the data"). Except as otherwise stated in the report, PB has not verified the accuracy or completeness of the data. To the extent that the statements, opinions, facts, information, conclusions and/or recommendations in the report ("conclusions") are based in whole or part on the data, those conclusions are contingent upon the accuracy and completeness of the data. PB will not be liable in relation to incorrect conclusions should any data, information or condition be incorrect or have been concealed, withheld, misrepresented or otherwise not fully disclosed to PB.

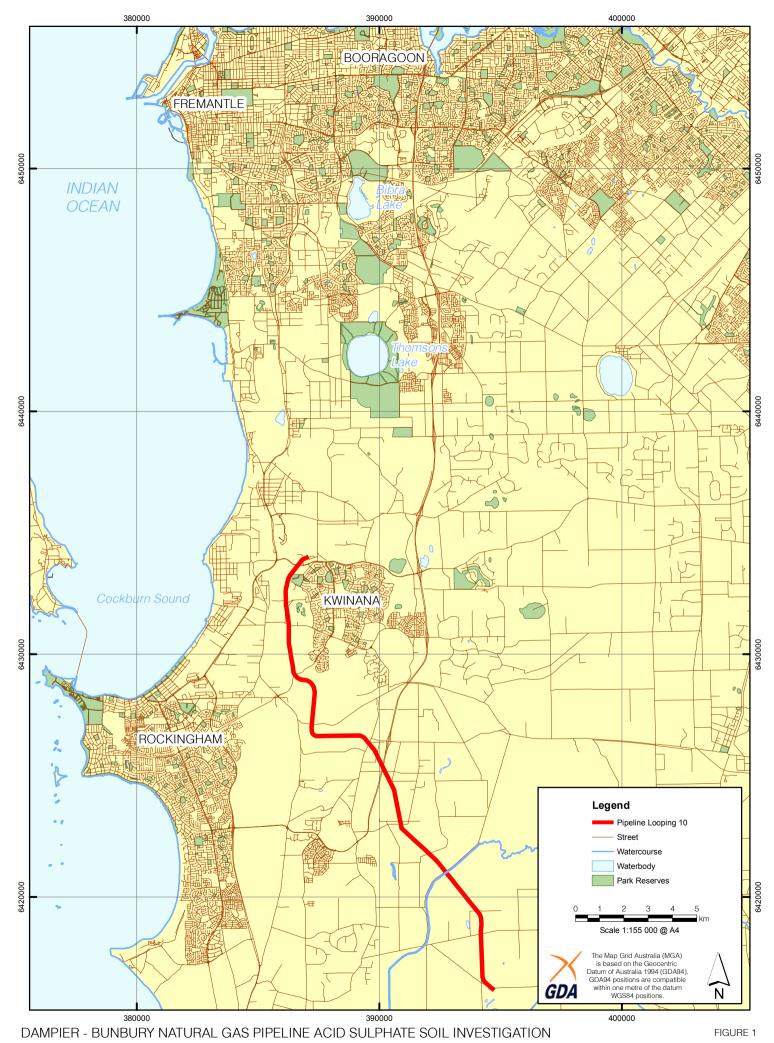
Environmental Conclusions

In accordance with the scope of services, PB has relied upon the data and has conducted environmental field monitoring and/or testing in the preparation of the report. The nature and extent of monitoring and/or testing conducted is described in the report.

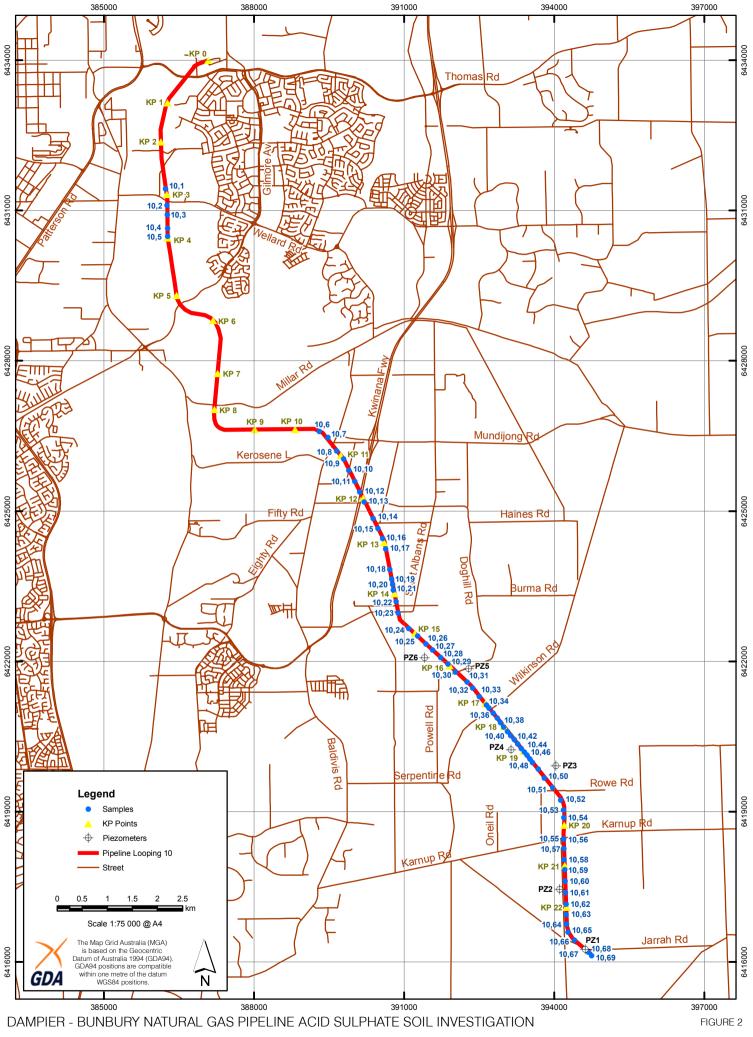
On all sites, varying degrees of non-uniformity of the vertical and horizontal soil or groundwater conditions are encountered. Hence no monitoring, common testing or sampling technique can eliminate the possibility that monitoring or testing results/samples are not totally representative of soil and/or groundwater conditions encountered. The conclusions are based upon the data and the environmental field monitoring and/or testing and are therefore merely indicative of the environmental condition of the site at the time of preparing the report, including the presence or otherwise of contaminants or emissions.

Also, it should be recognised that site conditions, including the extent and concentration of contaminants, can change with time.

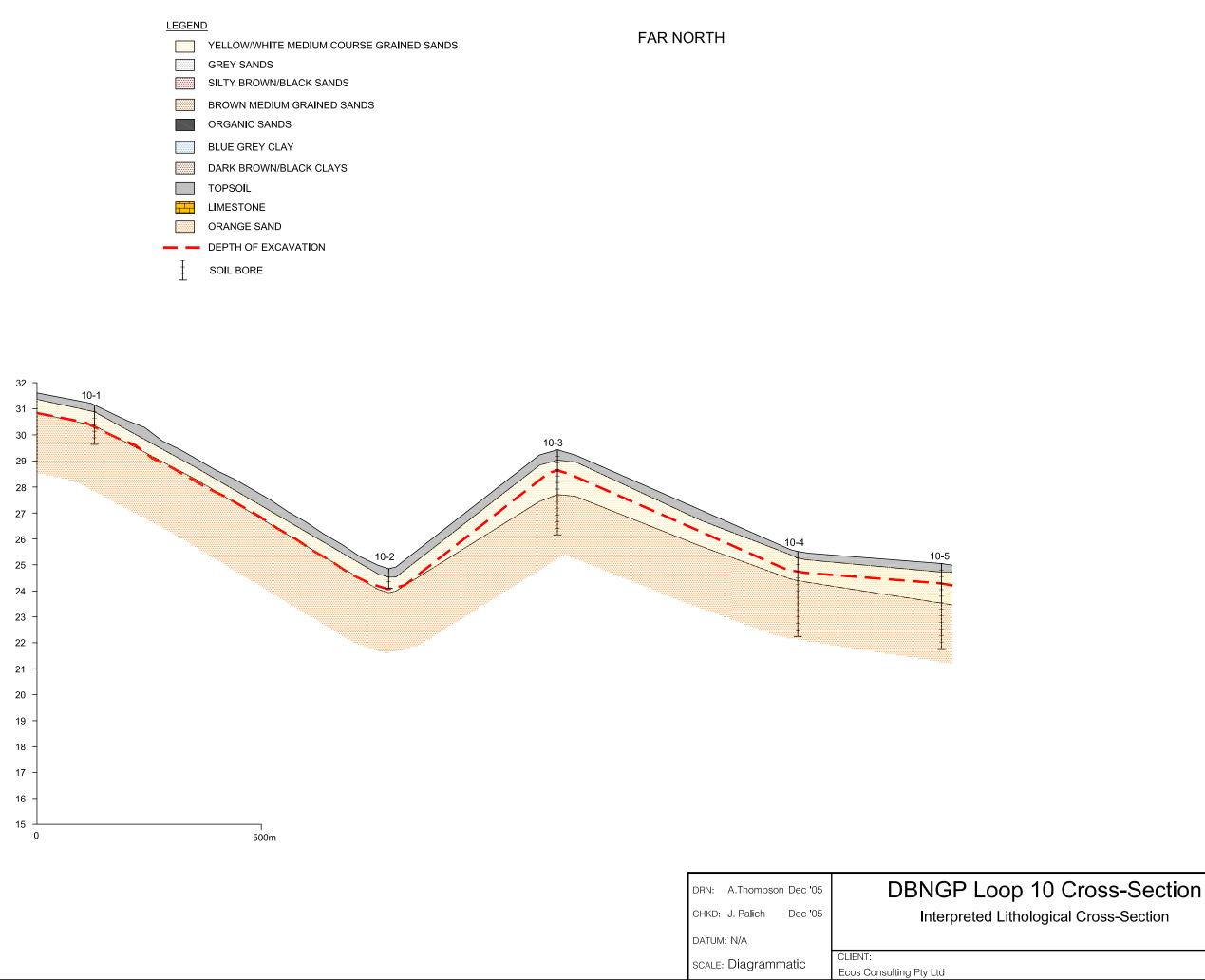
Within the limitations imposed by the scope of services, the monitoring, testing, sampling and preparation of this report have been undertaken and performed in a professional manner, in accordance with generally accepted practices and using a degree of skill and care ordinarily exercised by reputable environmental consultants under similar circumstances. No other warranty, expressed or implied, is made.

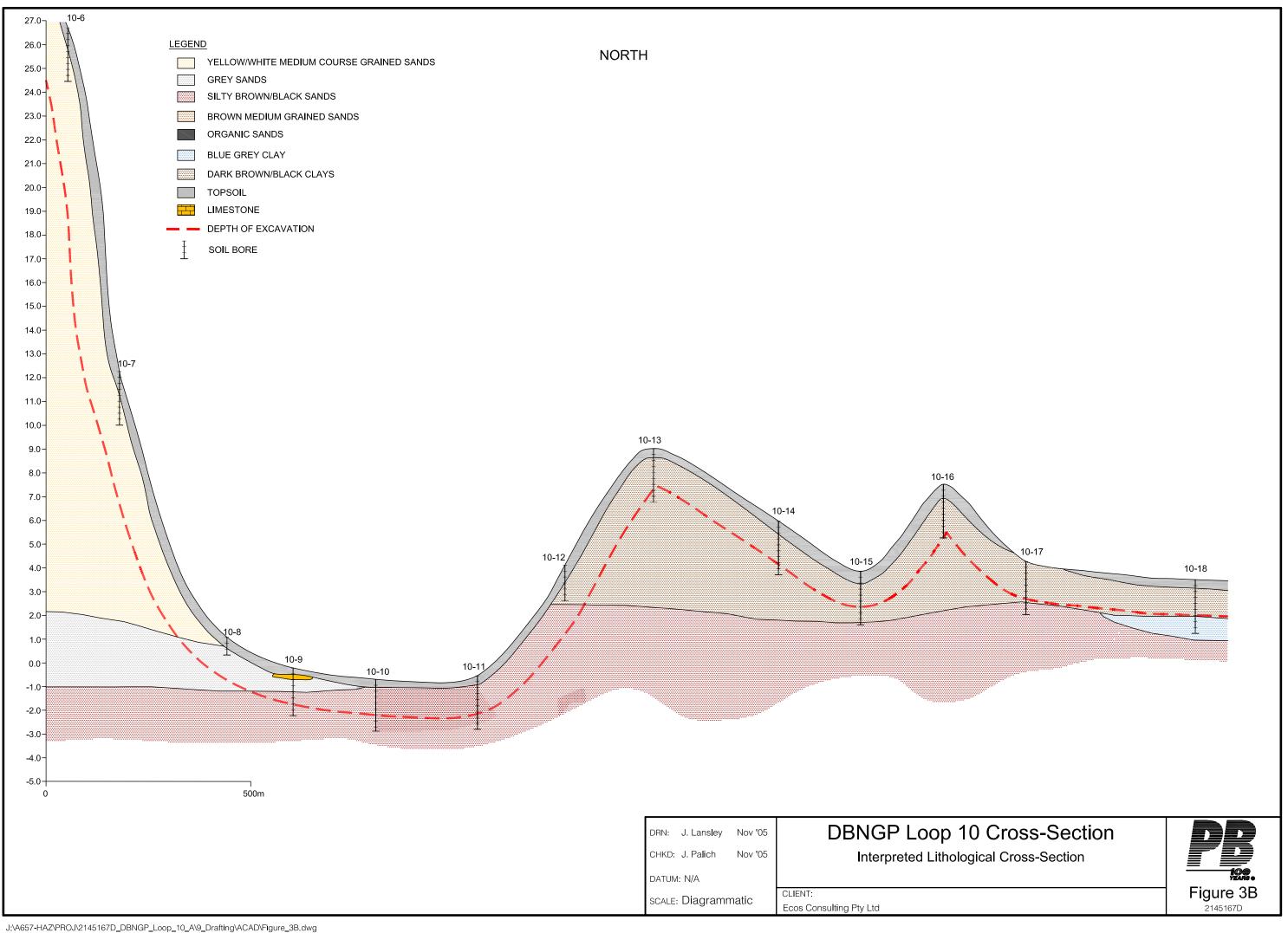

Report for Benefit of Client

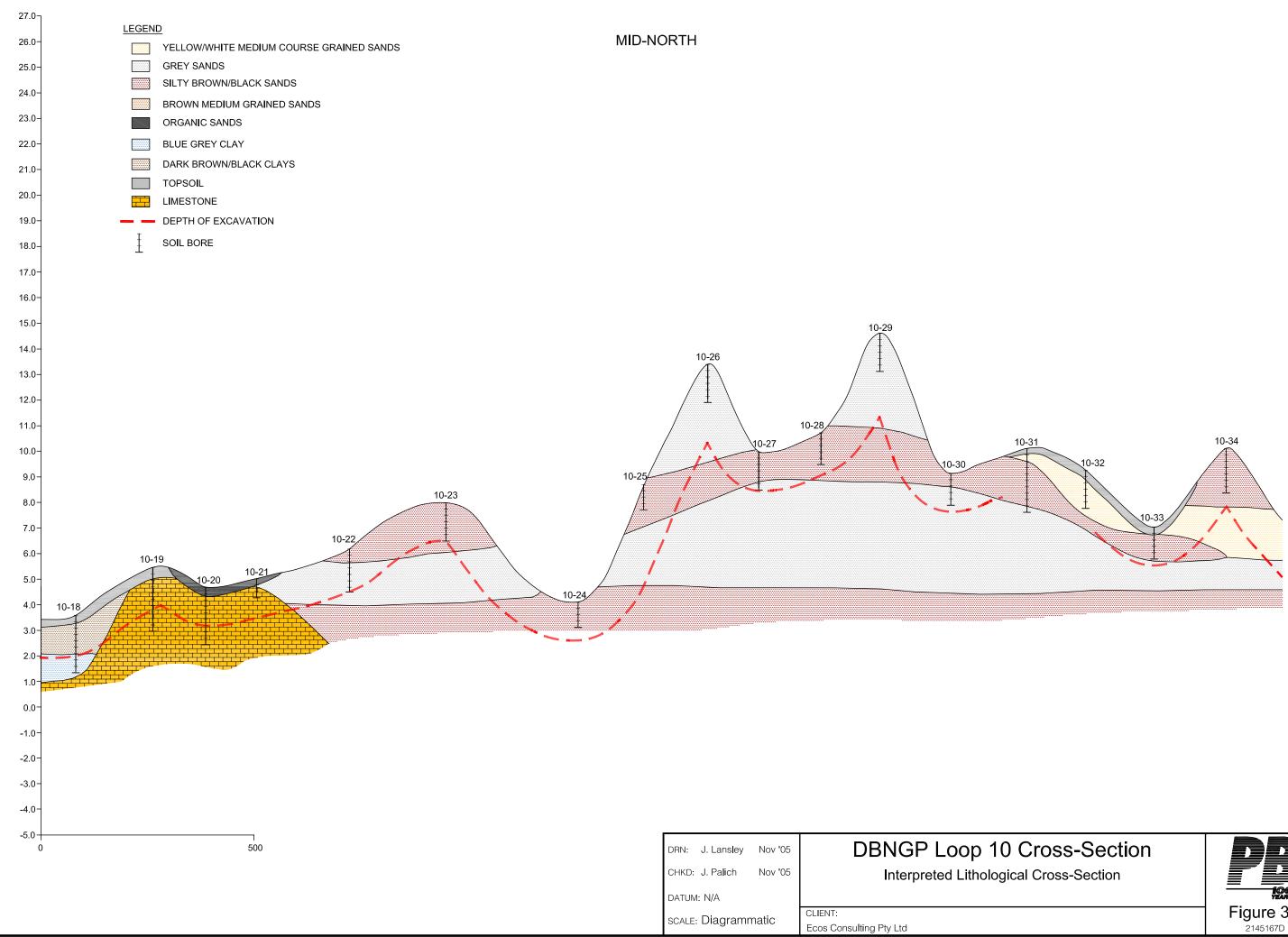
The report has been prepared for the benefit of the Client and no other party. PB assumes no responsibility and will not be liable to any other person or organisation for or in relation to any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report (including without limitation matters arising from any negligent act or omission of PB or for any loss or damage suffered by any other person or organisation expressed in the report). Other party relying upon the matters dealt with or conclusions expressed in the report). Other parties should not rely upon the report or the accuracy or completeness of any conclusions and should make their own enquiries and obtain independent advice in relation to such matters.


Other Limitations

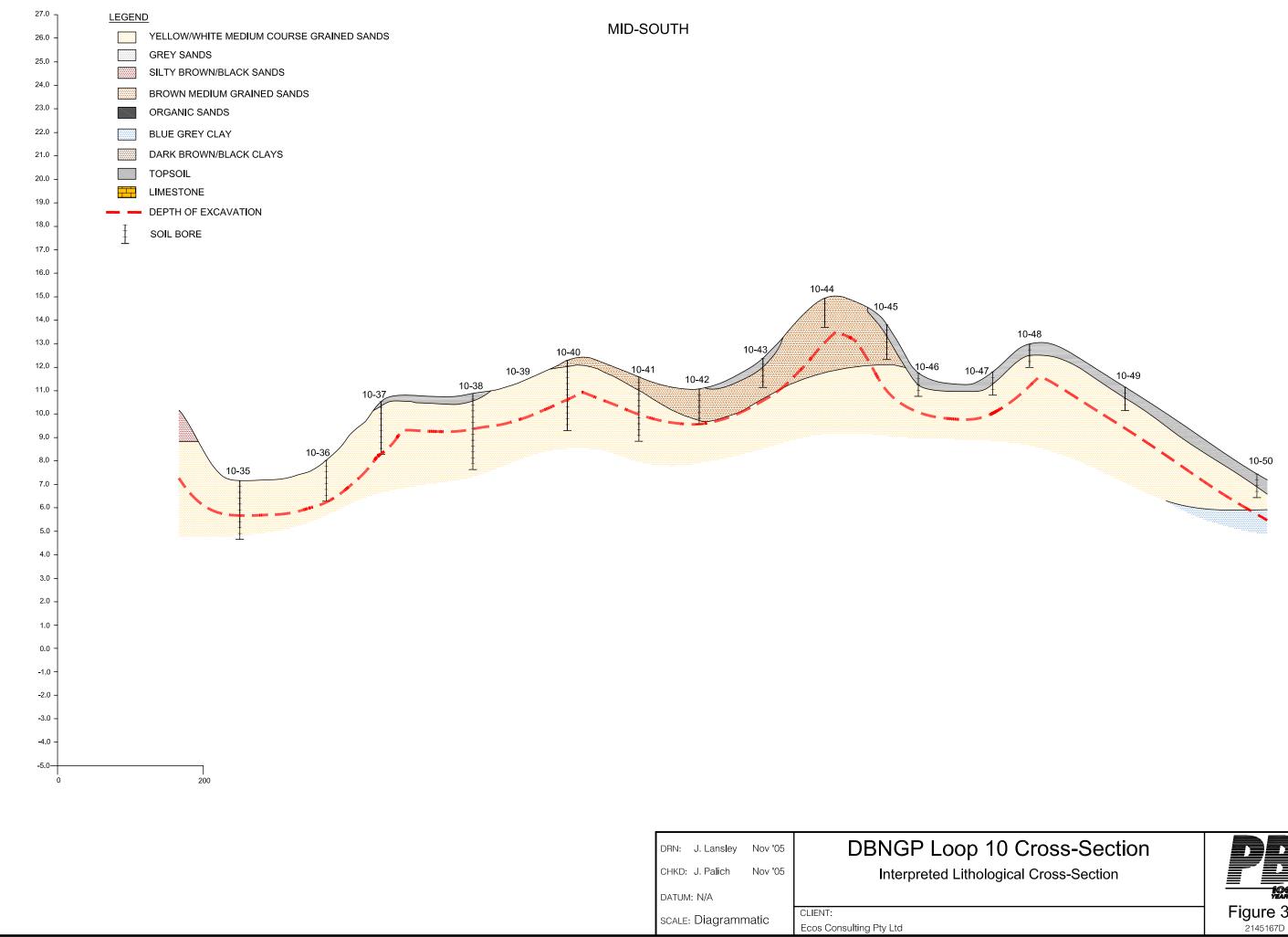
PB will not be liable to update or revise the report to take into account any events or emergent circumstances or facts occurring or becoming apparent after the date of the report.

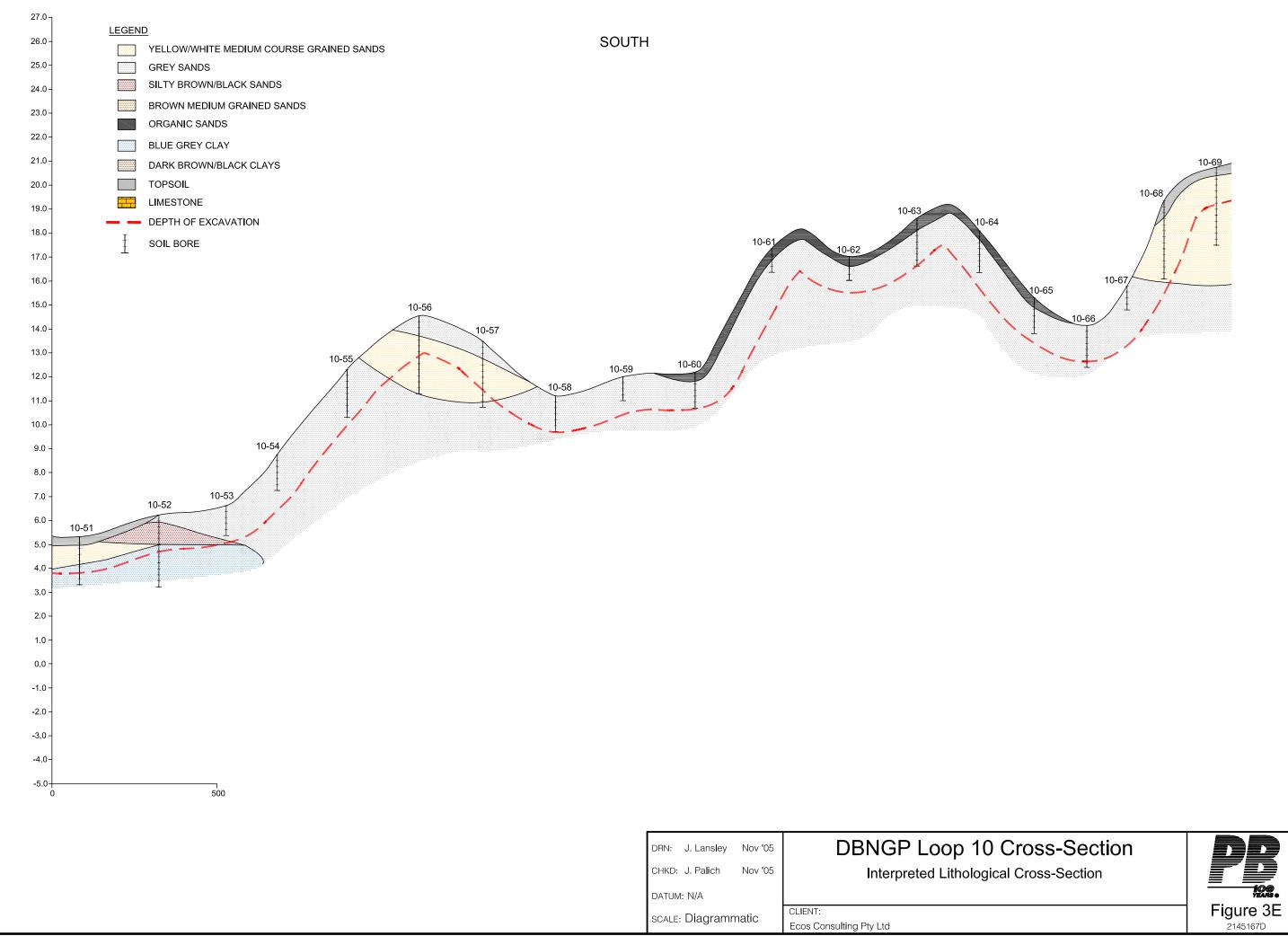

The scope of services did not include any assessment of the title to or ownership of the properties, buildings and structures referred to in the report nor the application or interpretation of laws in the jurisdiction in which those properties, buildings and structures are located.

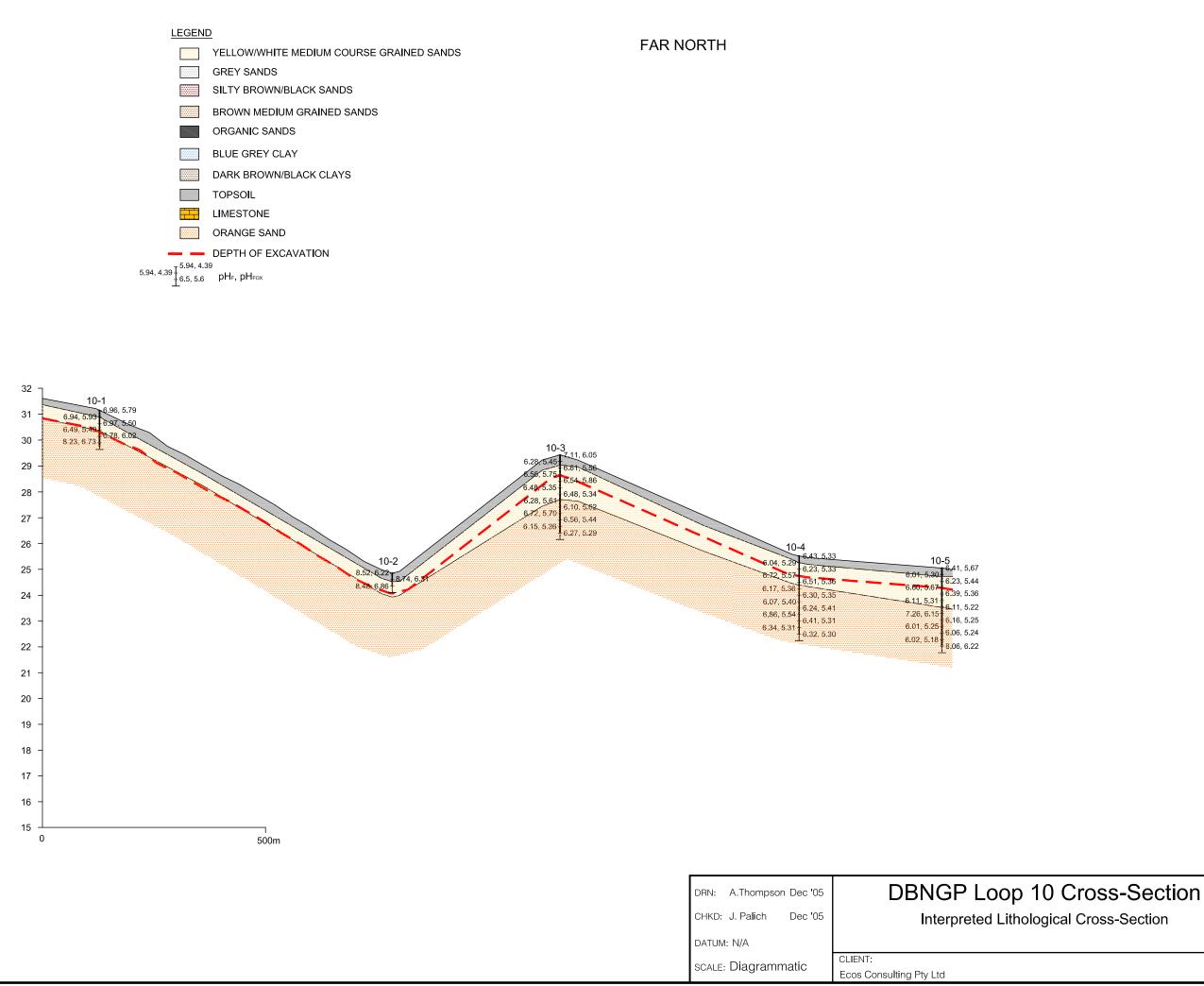

LOOPING 10 LOCATION MAP



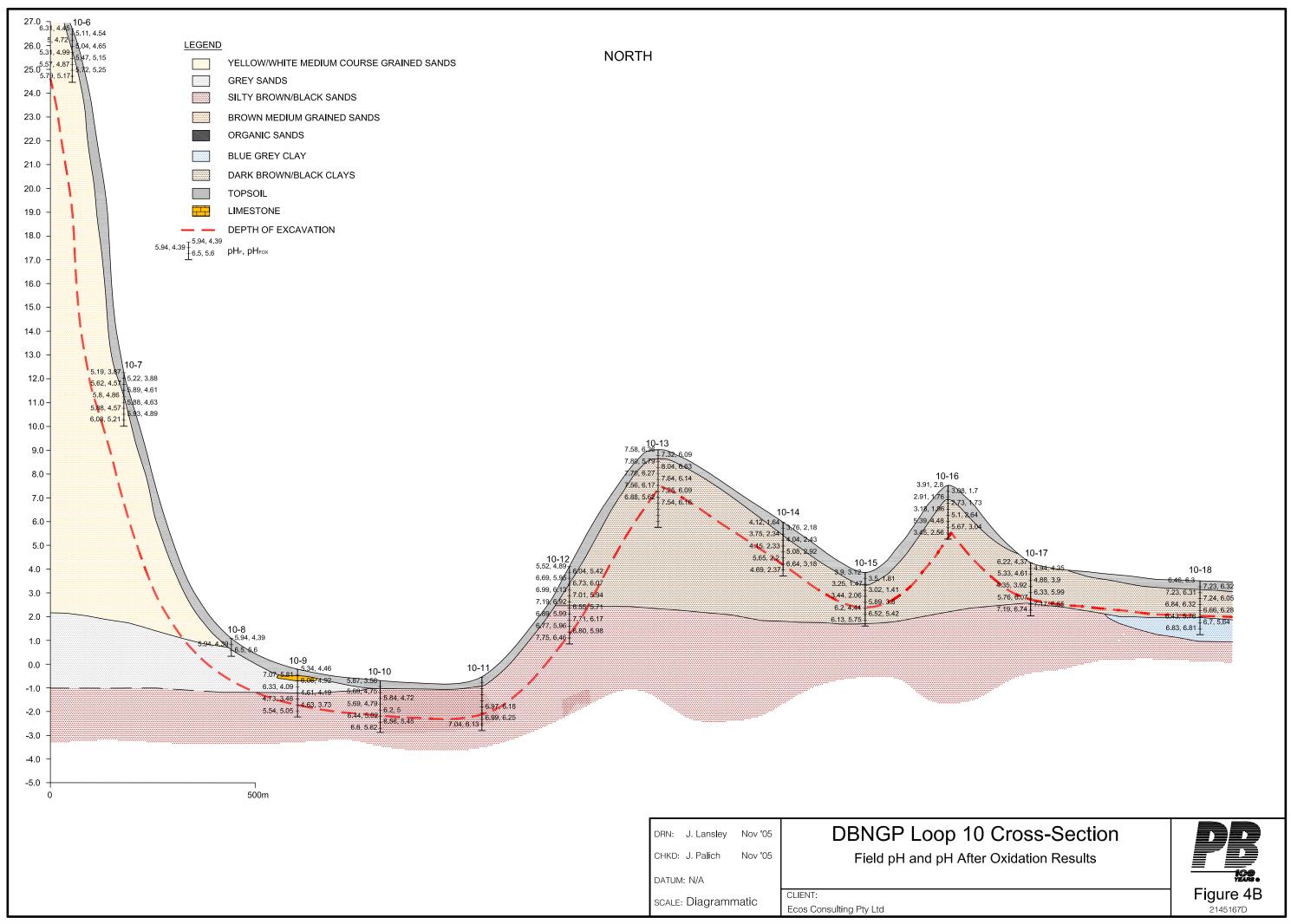
LOOPING 10 SAMPLE LOCATIONS

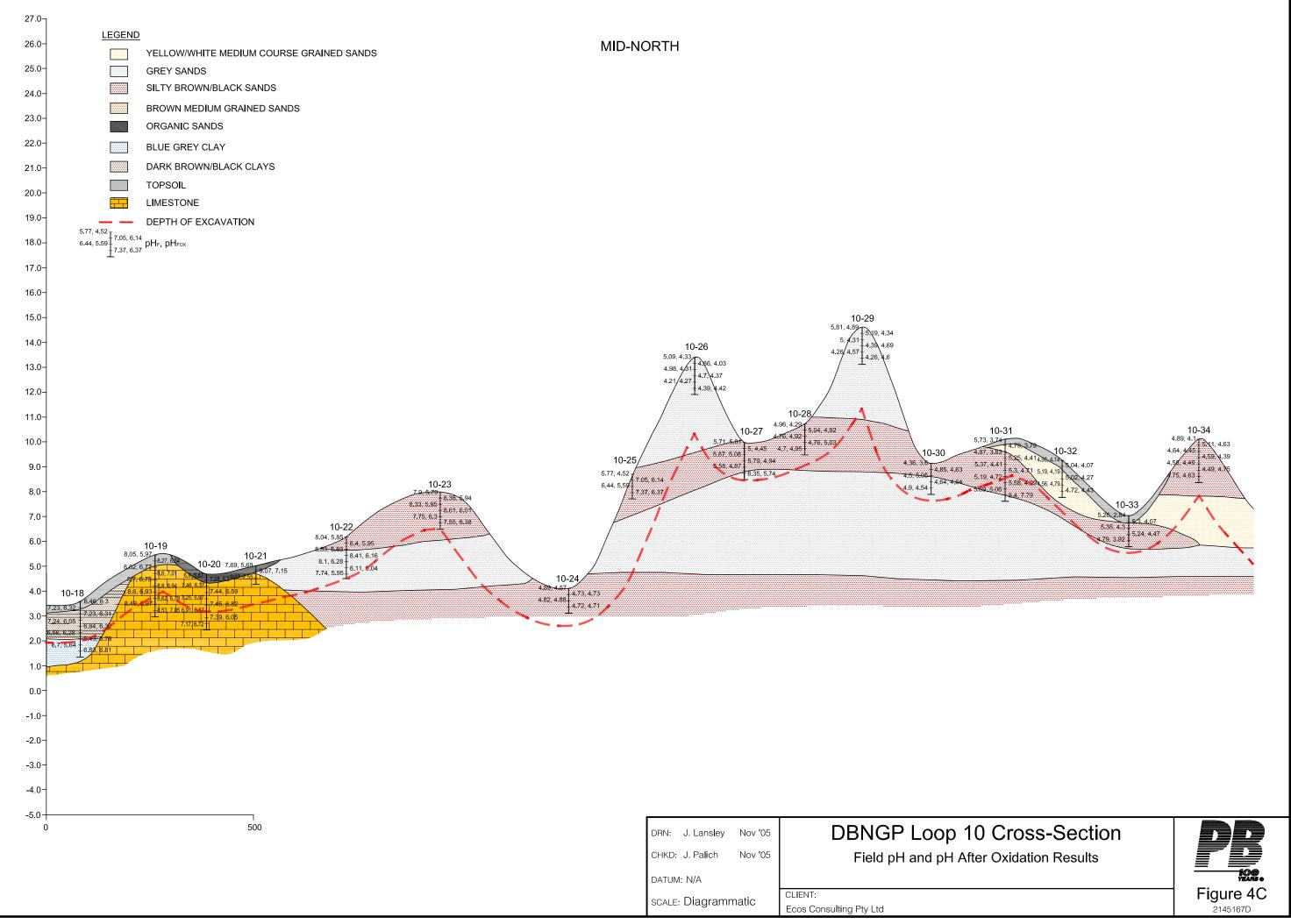


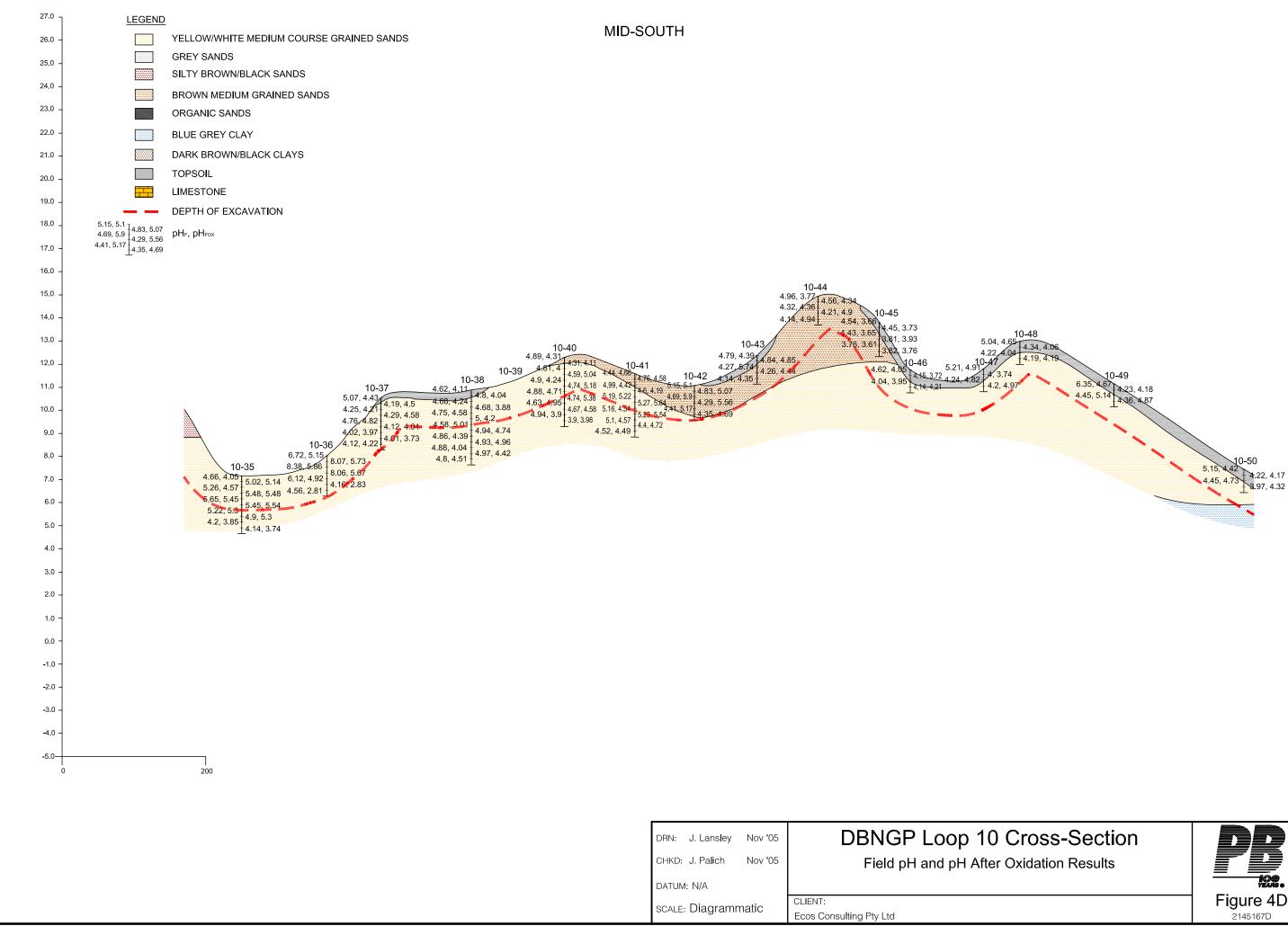


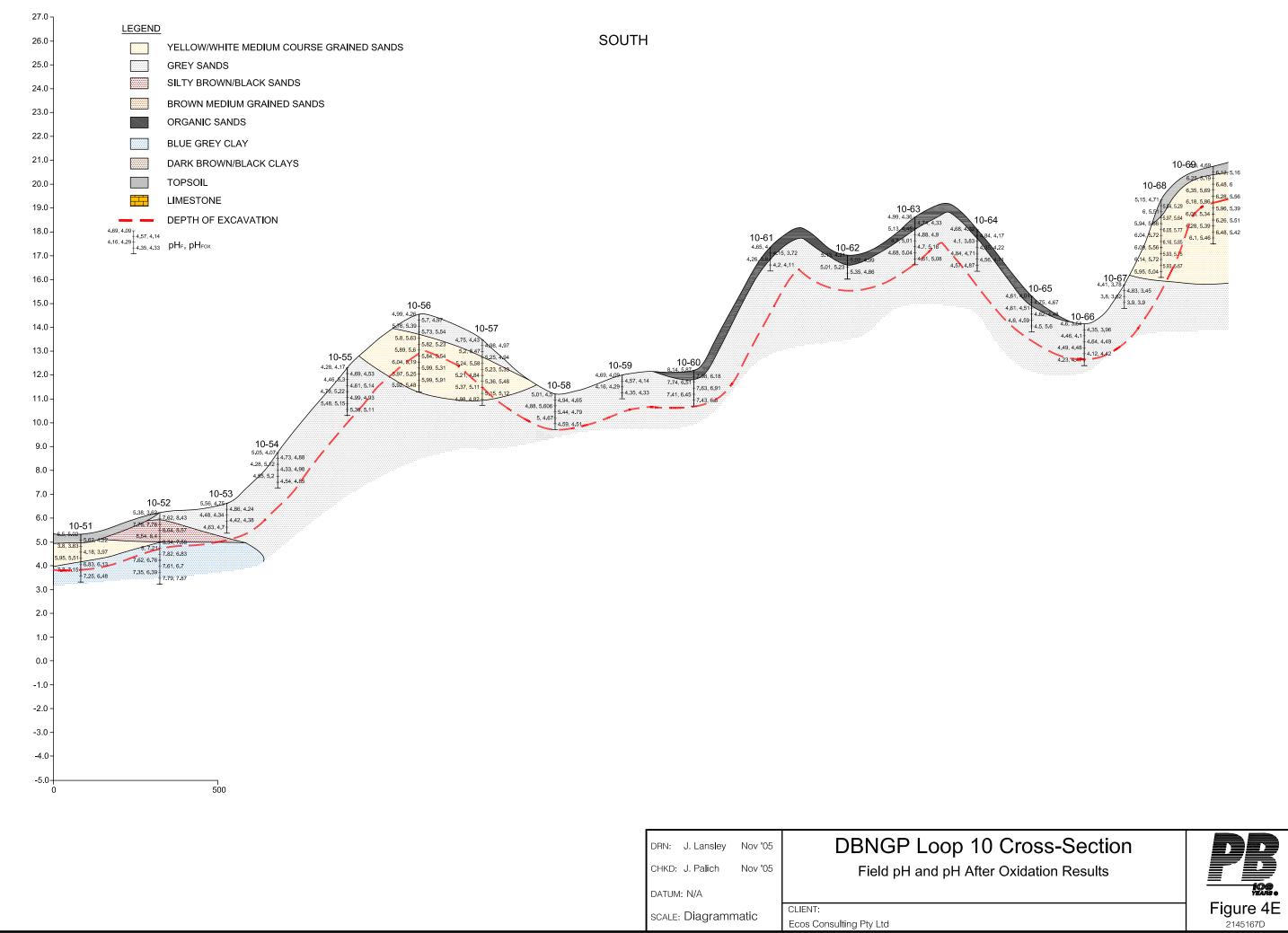


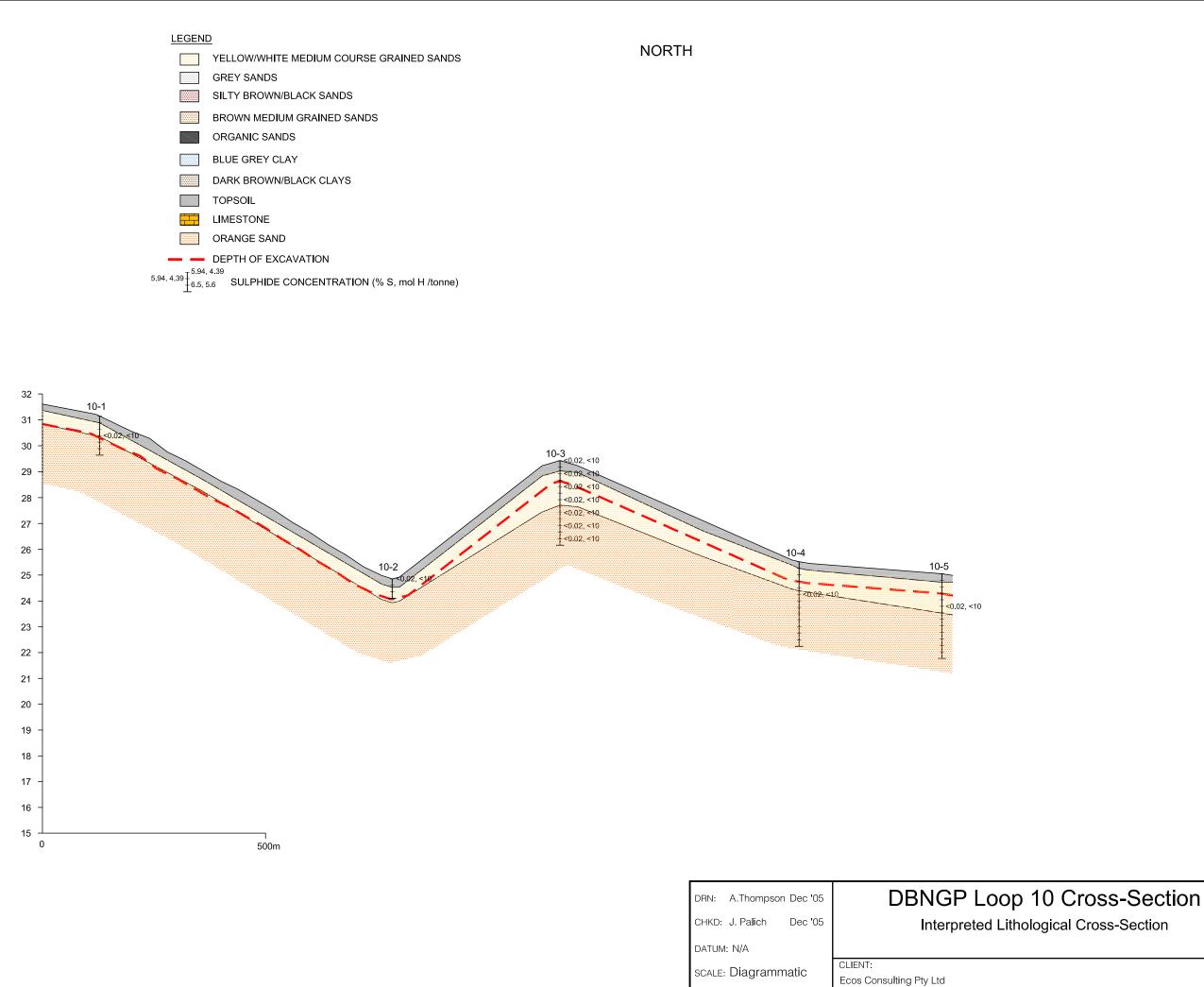
100 YEARS Figure 3C

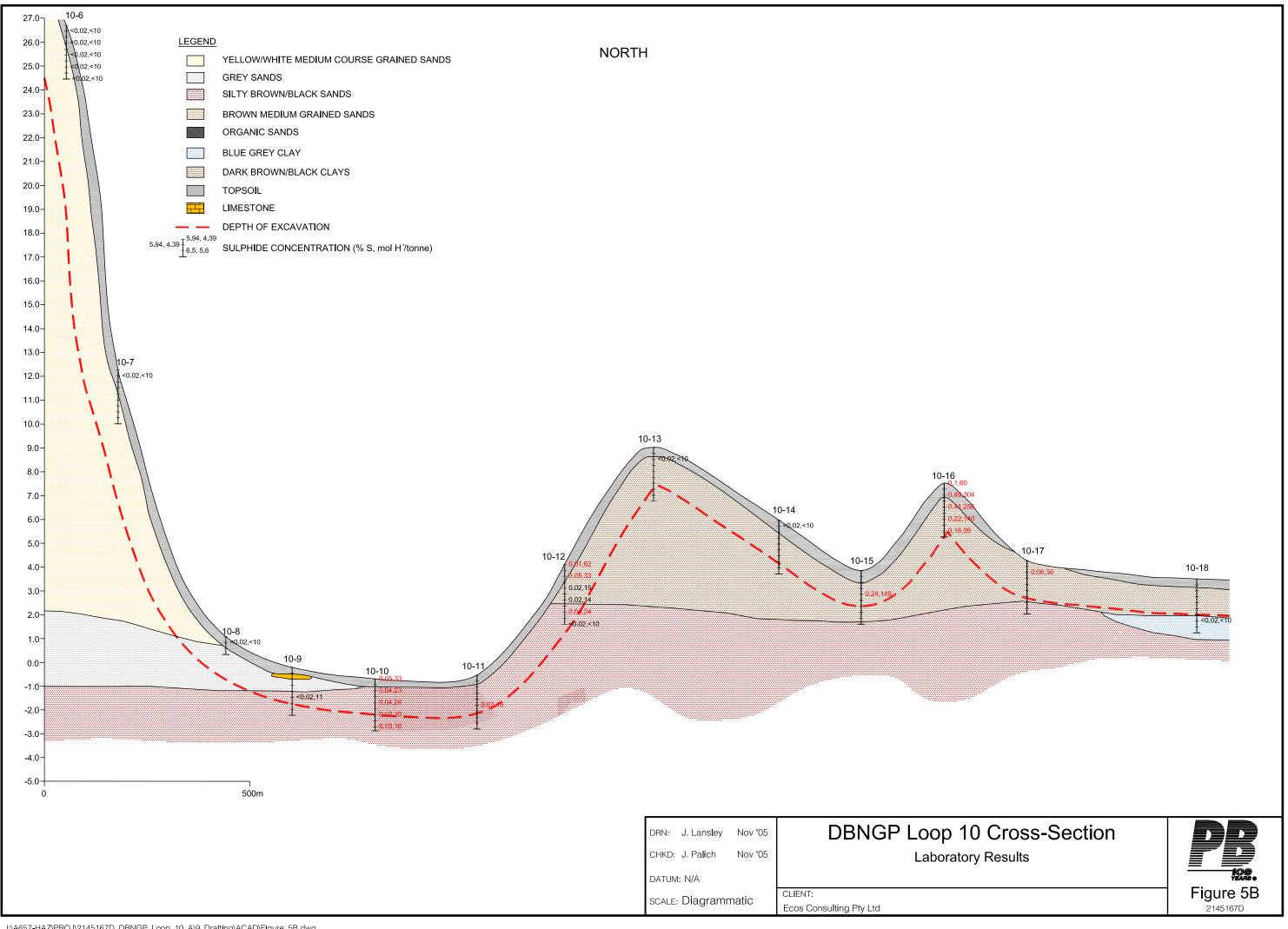


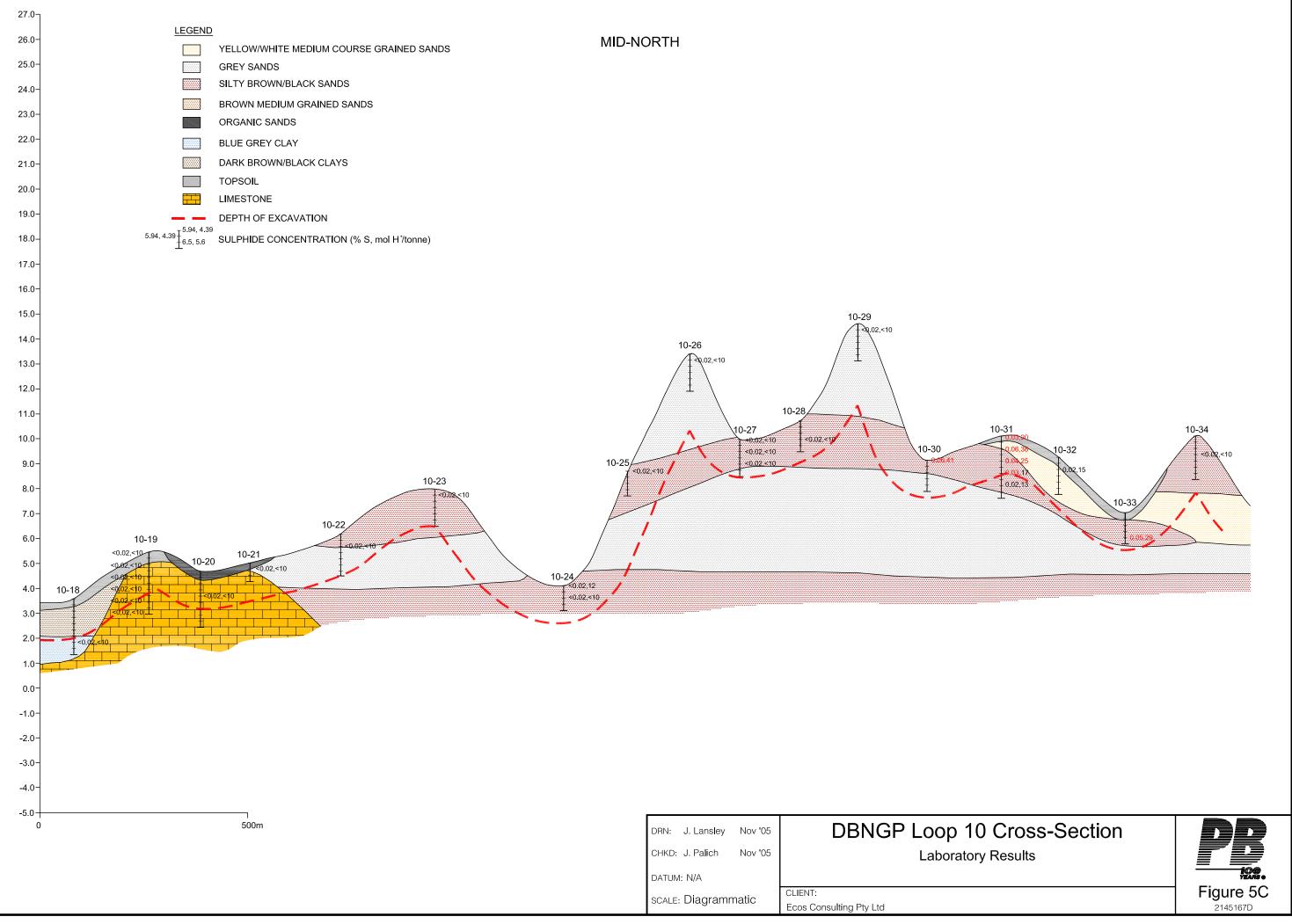

100 YEARS Figure 3D

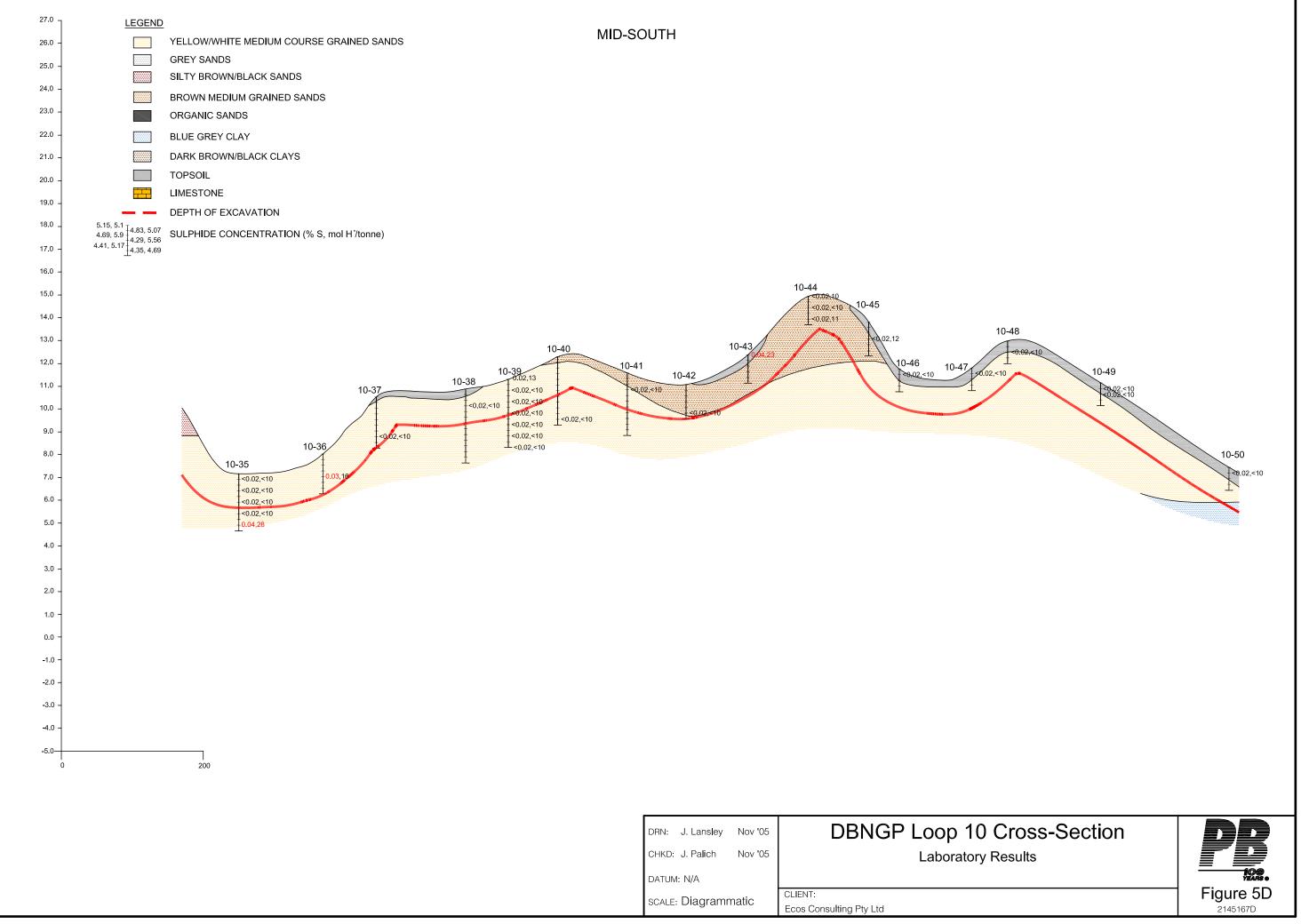


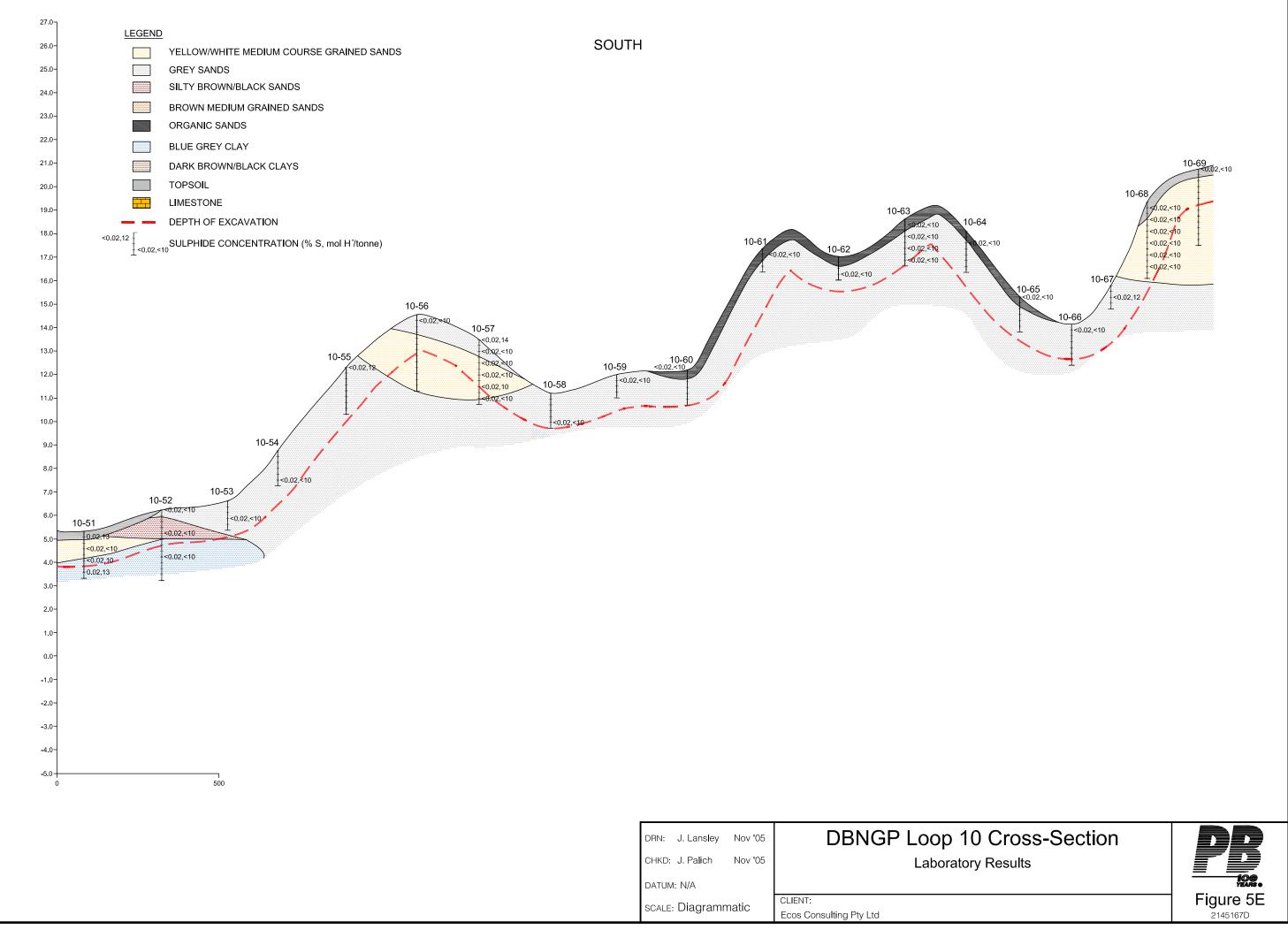







Figure 4D





Appendix A

Soil Bore Logs

D	R
	100 YEARS @

BOREHOLE NO.

10-01

SHEET 1 OF 1

Pro Bo Pro	oject	le L Nu	ocation: nber:	Loop 10 Kwinana 2145167[ASS	lomi	nees Pty Ltd Hole Angle: 90° Surfac		Dat Rec Loc	te Comr te Comp corded I g Check 1.61 m	bleted: 2 By: I	28/11/05 28/11/05 DMc JP
			Mounting: iameter:	Hand Aug 75 mm	ger		Hole Angle: 90° Surface Bearing: Co-ord				N 6431434	
Г	В	ore	nole Inforr	nation			Field Material Desc	rip	otion			
1	_	3	4	5 6	7	8	9 10	2	11	12	1	3
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	VS FB		HAND PENETROMETER R (kPa)	STRUCTURE AN OBSERV	ND ADDITIONAL /ATIONS
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05		m≦0h-1Z WATER					TOPSOIL SAND, fine to medium grained, pale D SAND, medium grained, yellow brown white. M SAND, medium grained, orange, with fine to medium grained grey yellow cemented sand throughout. M END OF BOREHOLE AT 1.40 m I)		HAND PENETIT (KPa)	-EOH - Refusat	
C Parsons E				This bore	hole log	shou	Id be read in conjunction with Parsons Brinckerhoff's acco	com	ipanying s	tandard r	otes.	

BOREHOLE NO.

			10 YEA	0 R\$ @												SHEET 1 OF 1
	oje	ect:		ocatio	n:	DBNG Loop	10 A		omi	nees Pty Ltd			Da	te Comn te Comp corded E	leted:	28/11/05 28/11/05 DMc
Pr	oje	ect	Nur	nber:		21451	67D						Lo	g Checke	ed By:	JP
				Moun ⁻ iamet		Hand / 75 mm		er		Hole Angle: 90° Bearing:	Surf Co-c			5.05 m 386264	N 643110	06
	_					nation		_		Field Materi	ial De					
1	+	2	3	4	•	5	6	7	8	9		10	11 RELATIVE DENSITY / CONSISTENCY	12 12 11		13
METHOD		SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOI		HAND PENETROMETER R (kPa)	STRUCTURI OBS	E AND ADDITIONAL ERVATIONS
				-25	_		D		SP	TOPSOIL SAND, fine to medium grained, pale brown, with humic and root organics.	9	D				
			NE	-	30		D	<u>(((((</u> 	SP	SAND, medium grained, yellow brown white, v medium to coarse limestone gravel throughour	vith t.					
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05			zμφyμ	- -24 - - -23 - - -23 - - -22 			D			END OF BOREHOLE AT 0.50 m					-EOH - Refu	
Parson						This b	oreh	ole log	shou	IId be read in conjunction with Parsons Brincker	hoff's a	acco	mpanying s	standard no	otes.	

BOREHOLE NO.

		YEA)() VRS @									S	HEET 1 OF 1
Bor	ject eho	le L	ocati nbe		DBNG Loop Kwina 21451	10 A na		omi	nees Pty Ltd		Date Comr Date Comp Recorded B Log Check	oleted: By:	28/11/05 28/11/05 DMc JP
				nting: eter:	Hand / 75 mm	-	er		Hole Angle: 90° Surfa Bearing: Co-c	ace R ords:		N 6430915	
			nole	Inforn	nation				Field Material Des		ion		
1	2	3		4	5	6	7	8	9	10 B	11 12 FLATIVE C		13
МЕТНОD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE VS FB S VI Q	K PAND H A VD H A VD HAND HAND HAND HAND KANA KPAND KANA HAND	STRUCTURE A OBSER	ND ADDITIONAL VATIONS
			-	0.30		D		SP	SAND, medium grained, grey black brown, with root organics.	D 			
			_	-	-	D		SP	SAND, medium grained, yellow brown, trace black organics.	M			
			-29	0.60	-	D			SAND, as above but orange				
			-	-	-	D		•					
			-	1-		D							
60/21/10			_	-	-	D							
			-28	1.50	-	D			SAND, as above but no organics				
			_	-	-	D							
			-	2-		D							
			_	- 2.25		D			SAND, as above grading to brown yellow orange				
			- 27	-	-	D							
			-	-		D							
		N F G W H		0								FOU	
		W E	-			D			END OF BOREHOLE AT 3.00 m			ЕОН	
C Fars					This b	oreho	ole log	shou	ld be read in conjunction with Parsons Brinckerhoff's a	iccomp	anying standard n	otes.	

BOREHOLE NO.

		YE.	DO 4R5 @												SHEET 1 OF
Bor	ject eho	le L	ocation: mber:	:	DBNG Loop Kwina 21451	10 A Ina	SS	omi	nees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	leted: 3y:	28/11/05 28/11/05 DMc JP
Dril	I Mo	del/	Mountir Diameter		Hand A 75 mm		er		-	Surfa Co-o			5.68 m 386276	N 643064	15
			hole Inf						Field Materia						
1	2	3	4		5	6	7	8	9		10	11	12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STURE FB		HAND PENETROMETER (kPa)		E AND ADDITIONAL ERVATIONS
			0.15			D		SP SP	SAND, medium grained, grey black brown, with root organics. SAND, medium grained, orange, trace black		D M				
			-	-				0	SAND, medium grained, orange, trace black organics.						
			-	-		D									
			-25	-		D									
			_	-		D									
				1-											
			1.25			D			······						
			-	-		D			SAND, as above but no organics						
			-24	-		D									
RELUGO.GF.			-	- 2-		D									
			-	-		D									
			_	_		D									
			-23	-		D									
LTU. VEISIUI		NE	-	-		D									
		NFQ WE	-	-3		D			END OF BOREHOLE AT 3.00 m					EOH	
			F	[This b	oreho	ole log	 shou	Id be read in conjunction with Parsons Brinckerh	noff's a	ccom	panying s	tandard n	otes.	

pp	
	ß

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

10-05

SHEET 1 OF 1

sore	ect: eho	le L	ocatio nber:	n:	DBNG Loop Kwina 21451	10 A ana	SS	lom	nees Pty Ltd	Dat Rec	e Comn e Comp corded E I Checke	leted: 3y:	28/11/05 28/11/05 DMc JP
			Mount iamet		Hand 75 mn	-	er		Hole Angle: 90° Surface RL: Bearing: Co-ords:		5.33 m 386278	N 643048	2
					nation				Field Material Descriptio		500270	14 043040	5
1	2		4		5	6	7	8	9 10 1	1	12		13
MEIHUU	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	ATTVE ISTITY / ISTENCY D D C C C C C C C C C C C C C C C C C	HAND PENETROMETER (kPa)	STRUCTURE OBSE	AND ADDITIONA RVATIONS
								SP	SAND, medium grained, grey black brown, with D root organics.				
			-			D		ŀ					
				-		-		[
			-25			D							
				-									
			0	.50				SP	SAND, medium grained, brown orange, with				
				-		D			organics.				
			-							i i i l			
				-									
			_			D	· · · · ·						
			1.	.00 1-		-			SAND, as above grading to orange, with trace				
			_			D			organics				
				-				ŀ					
			-24										
				-		D							
				_		D							
			1.	.75				••••	SAND, as above but no organics				
						D							
			- 2	.00 2-					SAND, as above grading to brown yellow orange				
									SAND, as above grading to brown yellow drange				
			-	_		D							
								ŀ					
			-23	_		D							
								ŀ					
			-	_									
						D							
			-	_				[
						D		}					
		N E	_	2								501	
		WE		3-		D			END OF BOREHOLE AT 3.00 m		F	EOH	
			_										
				-									
			-22										
				-									
					This h	oreh	ole loa	sho	Ild be read in conjunction with Parsons Brinckerhoff's accompar	nvina et	tandard n	otes	

BOREHOLE NO.

		YEA YEA	0 \R5 @												SHEET 1 OF
Bor	ject eho	le L	ocatio nber:		DBNG Loop Kwina 21451	10 A Ina		omi	nees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	leted: 3y:	08/11/05 08/11/05 BW JP
Dril	I Mo	del/	Moun	ting:	Hand		er		5		ce RL:	2	6.8 m		
Bor			iamet		75 mn	n			¥		rds:		389169	N 642645	1
1	2	oreł 3	nole Ir		nation 5	6	7	8	Field Material D ۹		criptio		12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		REL/		D ETROMETER	STRUCTURE	AND ADDITIONAL RVATIONS
			- - 26 - -	1.10 — - - - - - - - -				SW SW	TOPSOIL Silty SAND, medium grained, pale grey, sub angular and sub rounded grains, well sorted, with humic and root organics. SAND, medium to coarse grained, pale yellow orange, well sorted.	[
		NE	-25	_		D									
		NECYE	- 24 	- <u>2</u> - - - - -		D			END OF BOREHOLE AT 2.00 m					EOH	
	<u> </u>				This b	oreh	ole log	shou	IId be read in conjunction with Parsons Brinckerhoff's	s ac	compan	ying s	standard n	otes.	

)	BOREHOLE ENVIRONMENTAL	LOG
ŝ		
	DBNGP (WA) Nominees Pty Ltd	Date Comr

BOREHOLE NO.

SHEET	1	OF	1

			10	 00 IR5 @											
P B	lore	ect: ehol	e Lo	م تع و ocation: nber:	Lo Kv	BNGP oop 10 vinana 45167	ASS		mi	nees Pty Ltd		Da Re	ate Comp ate Comp ecorded E og Checke	nenced: Ieted: 3y:	SHEET 1 OF 08/11/05 08/11/05 BW JP
				Mounting iameter:		nd Au mm	ger			Hole Angle: 90° Surface Bearing: Co-ords			2 m E 389344	N 6426323	3
		В	oreł	nole Infor	mati	on				Field Material Descri	iptic	on			
_	1	2	3	4	5	5 E	;	7	8	9 10		1 ATIVE	12 12		13
	METHOD	SUPPORT	WATER	RL(m)		FIELD TEST			USC SYMBOL	NOK	명기-	ATIVE ASITY/ ISTENCY DW LS CV LS LS LS LS LS LS LS LS LS LS LS LS LS		STRUCTURE OBSEI	and additional Rvations
				0.10 —	_		, <u>((</u>	$\langle \langle $	SM W	TOPSOIL Silty SAND, medium grained, pale grey, sub angular and sub rounded grains, well sorted, with humic and root organics. D SAND, medium to coarse grained, pale yellow orange, well sorted. M					
				-	-	[
				-	-	C									
				- 11 1	_										
				_	-	[
OTECH.GDT 01/12/05				-	-	C									
PJ GEOTECH.				_	_										
DRELOGS.G			NFG	- -10										ЕОН	
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GE			Q Ш	- - - 9 3		Ē				END OF BOREHOLE AT 2.00 m					
Parsons Brinckerhoff Australia Pty				-	_		thole	100 el	hou	d be read in conjunction with Parsons Brinckerhoff's accor			standard o	otes.	

á C

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

SHEET	1	OF	1
		U 1	

Bor Pro	ject: ehol ject	le Lo Nur	ocation: mber:	Loop ² Kwina 21451	10 A ina 67D	SS	lomi	nees Pty Ltd			Da Re Lo	te Comp corded g Check	By:	08/11/05 08/11/05 BW JP
			Mounting: Diameter:	Hand / 75 mm		er		Hole Angle: 90° Sur Bearing: Co-		e RL: s:		.1 m 389514	N 6426059)
			hole Inform		-			Field Material De				••••		,
1	2	3	4	5	6	7	8	9	10	11		12		13
						(J)				RELAT DENSI CONSIST	TVE TY /	TER		
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		CONSIST BL SSL SSL SSL	DM D	HAND PENETROMETER (kPa)	STRUCTURE OBSEF	and additional Rvations
						$\langle \langle \langle \rangle \rangle$	SP	TOPSOIL Silty SAND, medium grained, pale grey, sub angular and sub rounded grains, well sorted,	D		TI			
			- 1 0.10 - -	-	D		SM	with humic and root organics. Silty SAND, medium grained, pale grey.	М					
					D	· ·		END OF BOREHOLE AT 0.50 m	w	$\frac{1}{1}$			EOH	
Lo Parsons				This b	oreho	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff's	acco	ompany	/ing s	standard r	notes.	

PB	
TOO YEARS ®	

BOREHOLE NO.

Projec	ole L ole L xt Nu		Loop 1 Kwinai 214516	I0 A na 67D	SS	omi	nees Pty Ltd			Date Cor Recordeo Log Cheo	d By:	08/11/05 08/11/05 BW JP
		/Mounting: Diameter:	Hand A 75 mm	-	er		Hole Angle: 90° Sur Bearing: Co-		e RL: ds:	-0.1 m E 3896	53 N 642	5896
E	Bore	hole Inforn	nation				Field Material De	esc	ription			
1 2	-	4	5	6	7	8	9	10	11	12		13
METHOD SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATI DENSIT CONSISTE BJ J J W S S J S	UD D ETROM	STRUCT	URE AND ADDITIONAL DESERVATIONS
PU GEOLECH.GDT 01/1205		- 0.10 0.20 				CH CH	TOPSOIL Silty SAND, medium grained, pale grey, sub angular and sub rounded grains, well sorted, with humic and root organics. Crushed LIMESTONE CLAY, high plasticity, black, firm.	M				
		2 2- - - - - - - - 3- - - - - - - - -		D			END OF BOREHOLE AT 1.75 m	w			EOH	

PB	
TOO YEARS ®	

BOREHOLE NO.

Project: Borehole Location:	DBNGP (WA) Nominees Pty Loop 10 ASS Kwinana	Ltd			Date Com Date Com Recorded	menced: pleted: By:	08/11/05 08/11/05 BW
	2145167D				Log Check	ed By:	JP
Drill Model/Mounting: Borehole Diameter:	Hand Auger 75 mm			face RL: ords:		N 642566	7
Borehole Informa		-	d Material De			11 042000	
1 2 3 4	5 6 7 8	9		10 1	1 12		13
METHOD SUPPORT WATER RL(m) DEPTH(m)	FIELD T SAMPLE GRAPHI USC SY	ROCK MATERIAL FIELD DES		股	ST MD VST D HAND PENETROMETER I (KPa)	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
	D CH with hum Silty CLA	Silty SAND, medium grair ar and sub rounded grains <u>c and root organics.</u> Y, high plasticity, black, ve	s, well sorted,				
		BOREHOLE AT 2.00 m				EOH	

BOREHOLE NO.

Bore	ect eho	le L	ocatio		DBNG Loop Kwina 21451	10 A Ina	SS	omi	nees Pty Ltd		C F	ate Comr ate Comp ecorded E og Check	oleted: By:	08/11/05 08/11/05 BW JP	
			Mour iame		Hand Auger Hole Angle: 90° Surface RL: -0.4 m 75 mm Bearing: Co-ords: E 389879 N 6								N 64254	44	
					ation	_		1	Field Materia						
METHOD 1	SUPPORT N	WATER 2	RL(m)	4 (m)HTPAD	5 FIELD TEST	SAMPLE 0	GRAPHIC LOG	USC SYMBOL ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	10 MOISTURE				13 E AND ADDITIONAL ERVATIONS	
ME	NS .		- 	<u>–</u> 0.10 – 1 – 1.50 –	FIE FIE			SP CH	TOPSOIL Silty SAND, medium grained, pale gre sub angular and sub rounded grains, well sorted with humic and root organics. Silty CLAY, high plasticity, black, very stiff.	ev, D		H HA F F F F F F F F F F F F F F F F F F			
			- - 			D			END OF BOREHOLE AT 2.00 m				EOH		

Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

10-12

1

		YEA	เครี 🤋											SHEET 1 OF
Pro Bo		le L	ocation: nber:	DBNG Loop Kwina 21451	10 A na		lomi	inees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	leted: sy:	28/11/05 28/11/05 DMc JP
			Mounting: iameter:	Hand / 75 mm	-	er Hole Angle: 90° Surface RL: Bearing: Co-ords:						.49 m 390126	N 6425391	l
	В	oreł	nole Inforn	nation				Field Material De	esc	riptio	1			
1	2	3	4	5	6	7	8	9	10	11		12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELA DENS CONSIS		HAND PENETROMETER (kPa)		AND ADDITIONAL RVATIONS
			-		D		OL	TOPSOIL HUMUS, brown, with roots.	D					
			- 0.30				СН	fine to medium grained grey sand.	M					
			-		D		СН	CLAY, high plasticity, yellow banded dark grey.						
			- 4		D									
			- 0.70 -			· · / ·	СН	Sandy CLAY, high plasticity, grey, medium grained sand, light grey.	_					
			- 1.00 -1 -		D									
			-		D		СН	CLAY, high plasticity, grey, with fine to medium grained sand.						
			- 1.40		D		СН	CLAY, high plasticity, grey with some grey brown yellow mottling, trace of fine grained sand.	-					
		▼	-		D				W					
5			1.75		D		СН	CLAY, high plasticity, grey brown yellow streaked dark grey, with trace fine limestone gravel throughout.						
			2-		-									
			2.10		D		СН	CLAY, high plasticity, dark black grey.	-					
			- - 2 2.50		D									
			-	•	D	$\left[\right]$	СН	Marine CLAY, high plasticity, dark green blue grey, with trace fine limestone gravel throughout.						
					D									
F			-		D			END OF BOREHOLE AT 3.00 m					EOH	
				This b	oreh	ole loa	shou	uld be read in conjunction with Parsons Brinckerhoff's	acco		/ing s	standard no	otes.	

BOREHOLE NO.

Pro	ject eho ject	le L Nui	ocation: nber:	Loop 7 Kwina 214510	10 A na 67D	SS	omi	nees Pty Ltd		Da Re Lo	ate Com ecorded g Check	By:	28/11/05 28/11/05 DMc JP
			Mounting: iameter:	Hand / 75 mm		er		Hole Angle: 90° Surface Bearing: Co-ord			8.94 m E 390216	64252	าร
			nole Inform		•			Field Material Desc					
1	2	3	4	5	6	7	8	9 10	0	11	12 12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION			ETROM	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
						$\langle \langle \langle \rangle$	CL- CH	TOPSOIL CLAY, with humic and root organics.)				
			0.15		D		CH	SAND, medium to coarse grained, orange. M CLAY, high plasticity, dark black brown, trace organics.	И				
			8 1- 1.10		D		СН	CLAY, high plasticity, green grey brown, trace					
			- - - 1.60		D			organics.					
		N	- - 7 2- -		D		СН	CLAY, high plasticity, blue grey mottled grey brown trace organics. CLAY, as above with trace fine limestone gravel.					
		ZFQSF	 		D			Clay, with medium limestone sand throughout. END OF BOREHOLE AT 2.25 m				- EOH - Refu	ısal

BOREHOLE NO.

		IC YE)() NR5 ®										SHEET 1 OF 1
Pro Bo		le L	ocation: mber:	DBNG Loop Kwina 21451	10 A Ina		omi	nees Pty Ltd			Date Comr Date Comp Recorded E Log Check	oleted: By:	04/11/05 04/11/05 KS JP
Dri	ll Mo	odel/		Hand A	Auge	er		Hole Angle: 90° Surface RL: Bearing: Co-ords:				N 642470	
			nole Inform		_			Field Material I					-
1		3	4	5	6	7	8	9	10	11	40		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIN DENSITY CONSISTE BL S S S S S S S S S S S S S S S S S S S		STRUCTURE OBSE	AND ADDITIONAL RVATIONS
Γ			- 6		D		SP	TOPSOIL SAND, dark brown, with peat and humic organics.	М				
			-				СН	CLAY, high plasticity, dark brown, firm, with minor traces of organic matter.					
			-		D								
			-	_	D								
			-										
			- 1-	-	D								
			- 5	_	D								
CU/21/10			-	_	D								
_			-										
J GEOLECH.GU			_		D								
BURELUGS.GF		N	-	-	D								
-06 BU		NHQ MH	- 4		D	/		END OF BOREHOLE AT 2.00 m				EOH	
BOREHOLE			-										
				-									
EINVIRONMENTAL			-	_									
			-	_									
			- 3-	-									
Australia Pty Ltd.			- 3	_									
Brinckernon			-										
SONS B			-										
				This b	oreho	ole log	shou	ld be read in conjunction with Parsons Brinckerhoff	's acco	ompanyi	ng standard n	otes.	

pp
100 YEARS ®

BOREHOLE NO.

			10 YEA	0 RS @											SHEET 1 OF 1	
Pr Bo		ct: nole		ocation: nber:	DBNG Loop Kwina 21451	10 A ana	SS	lomi	nees Pty Ltd			Da Re	te Comr te Comp corded I g Check	By:	04/11/05 04/11/05 KS JP	
				Mounting			er		0						-	
BC				iameter:	75 mr	n					E 390337 N 6424507					
1		Bo 2	3	ole Infor	mation 5	6	7	8	Field Material D	10 Desc			12		13	
			-								RELA" DENS	TIVE TTY /	TER			
METHOD		SUPPORI	WATER	RL(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	CONSIS BT S S BT S S S S S S S S S S S S S S S S S S S		HAND PENETROMETER (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS	
							$\langle \langle \langle \langle$	SP	TOPSOIL SAND, medium grained, dark grey, with organics.	D						
S.GPJ GEOTECH.GDT 01/12/05				- 0.10		D D D D D		СН	Silty CLAY, high plasticity, black, firm to stiff.							
SELOG			N	- 2		D		1								
BO	1	1	≥⊩ф≩ш	2		D			END OF BOREHOLE AT 2.00 m					EOH		
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ				- - - - - -	-											
) Pars					This b	ooreh	ole log	j shoi	Ild be read in conjunction with Parsons Brinckerhoff's	s acco	ompany	/ing s	standard n	otes.		

=	100 YEARS @

BOREHOLE NO.

Clie			0 NF5 @				lom	nees Pty Ltd			ate Com		SHEET 1 OF /
Bor		le L	ocation: mber:	Loop Kwina 21451	ana	SS				R	ate Com ecorded og Check	By:	04/11/05 KS JP
Dril	I Mo	del/		g: Hand	Aug	er		0	Surface RL: 7.6 m Co-ords: E 390410 N 642				
			nole Info					Field Material					
1	2	3	4	5	6	7	8	9	10	11 RELATIVE DENSITY /	12 ന്		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m) FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE			STRUCTUF OB	RE AND ADDITIONAL SERVATIONS
		-	0.10 —			$\langle \langle \langle \rangle \rangle$	OL	TOPSOIL SAND, medium grained, dark grey, with organics.	D				
			-	-	D		CI	Silty CLAY, high plasticity, black, firm to stiff.	M				
			_	-	D								
		▼	7		-	И			w				
			- 7		D	ľ							
			_		D								
			- 1.00 -	1-		4		Silty CLAY, as above with minor root organics.					
			_	-	D								
GEOTECH.GDT 01/12/05			-	-	D								
OIECH.GL			- 6	-	D		1						
·			-	-	D		1						
BORELOGS.GPJ			;	2	D		1					EOH	
FOG B								END OF BOREHOLE AT 2.00 m				Lon	
INTEHOLE			_	1									
=NIAL BC			_	-									
IVIRONM			- 5	-									
on 5.1 Ef			-										
/ Ltd. Vers.				3-									
ustralia Pty													
ckerhoff Al			-										
Parsons Brinckemott Australia Pty Ltd. Version 5.1 ENVIKONMENIAL BOREHOLE LOG			-	-									
e Par				This I	boreh	ole log	sho	Ild be read in conjunction with Parsons Brinckerhoff	s acco	ompanying	standard r	notes.	

BOREHOLE NO.

Pr Bo		:t: ole L	ocation: mber:	DBNGF Loop 1 Kwinar 214516	0 A na		omi	nees Pty Ltd			Da Re	ite Comr ite Comp corded E g Checke	oleted: By:	SHEET 1 OF 7 04/11/05 04/11/05 KS JP
			Mounting: Diameter:	Hand A 75 mm		er		Hole Angle: 90° Bearing:	Surfa Co-o	ice Rl rds:		.2 m 390490	N 642410)4
Г	E	Bore	nole Inforn	nation				Field Mate	rial Des	cripti	on			
1			4	5	6	7	8	9		10	11	12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	D USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	V	sture FB VL		HAND PENETROMETER R (kPa)	STRUCTURI OBSI	E AND ADDITIONAL ERVATIONS
C Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05		Z ⊑ÇŞ⊎	- 4 - - 1- - 3 - 				CH	CLAY, high plasticity, dark brown black, firm stiff, with minor sand.	to				-EOH - Refu	Isal
C Parso			1	This bo	oreho	ole log	shou	ld be read in conjunction with Parsons Brincke	erhoff's a	compa	inying	standard n	otes.	

D
100 YEARS @

BOREHOLE NO.

Client:	DBNGP (WA) Nomi	nees Pty Ltd	Date Commenced: 04/11/05
Project:	Loop 10 ASS		Date Completed: 04/11/05
Borehole Location: Project Number:	Kwinana 2145167D		Recorded By: KS Log Checked By: JP
-			5 5
		Hole Angle: 90° Surface	
Borehole Diameter:	75 mm	Bearing: Co-ords:	
Borehole Inform1234	nation 5 6 7 8	Field Material Descrip	11 12 12
		3 10	RELATIVE CC DENSITY H
METHOD SUPPORT WATER RL(m) DEPTH(m)	FIELD TEST SAMPLE GRAPHIC LOG USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	RELATIVE DENSISTY/ DENSISTY/ W W STRUCTURE AND ADDITIONAL OBSERVATIONS D D D D D D D D D D D D D D D D D D D
		SAND, medium grained, dark grey, with organics. D	
- 0.10		CLAY, high plasticity, pale grey and yellow M mottled, firm.	
- 0.30	D	as above but black	
- 3			
1.00 -1	СН	CLAY, high plasticity, pale brown, firm to stiff.	Earthy odour
	D		
	D		
	D	Marine CLAY, high plasticity, pale blue grey.	
2-	D /	END OF BOREHOLE AT 2.00 m	

BOREHOLE NO.

Bore	ect: ehol	le Lo	ocati nber		DBNG Loop Kwina 21451	10 A ana	SS	omi	inees Pty Ltd		Da Re	te Comr te Comp corded E g Checke	By:	04/11/05 04/11/05 KS JP		
	rill Model/Mounting: Hand Auger orehole Diameter: 75 mm						ər		0	face ords		.4 m 390617	N 64734	 \		
UI					nation	n	—		Bearing: Co- Field Material De			E 390617 N 6423492				
1	2	orer 3		4	5	6	7	8	Pield Material De	10	11	12		13		
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	μ.	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	KETATIA DENSILA CONRIGIZATION CONRIGIZION CONRIFICINA CONRIGIZION CONRIGIZION CONRIFICINA CONRIFICINA CONR	HAND PENETROMETER (kPa)	STRUCTUR OBS	E AND ADDITION ERVATIONS		
			-	0.25	-	D		SM	Silty SAND, dark brown, with organic matter. CLAY, pale brown grey, with friable limestone.	D						
			- 5	-	-	D										
			-	- 1-	-	D										
			- 4	1.20	-	D		СН	CLAY, high plasticity, pale brown grey, with friable limestone.							
			-	-	-	D										
		деф∋ш	-	2-	-	D							~~~			
-)⊗ш	- 3	-		D			END OF BOREHOLE AT 2.25 m				EOH			
			-	-	-											
			-	3-												
			- 2	-	-											

P	D
	100 YEARS @

BOREHOLE NO.

		YEA	10 185 @													SHEET 1 OF 1
Bo	oject reho	le L	ocati mbe		DBNC Loop Kwina 21451	10 A ana	SS	lom	nees Pty Ltd			C F)ate (Recor	Comp ded E	nenced: ileted: 3y: ed By:	04/11/05 04/11/05 KS JP
			Mou Jiame	nting:	Hand 75 mr		er		Hole Angle: 90° Surf Bearing: Co-		4.6 n F 39		N 642338	5		
					nation		<u> </u>		Field Material De							
1	2	3		4	5	6	7	8	9		10	11	1	2		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		SI URE		AND AND	(kPa)	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
Σ	S	3	R		Ē	ري ا	()))))) OL	TOPSOIL, dark grey black, with organics.		∑ ≥ D	ິດແ່ນ>ິ		ΞĚ		
			_	0.10		D	<pre>((((</pre>	SP	SAND, medium grained, pale yellow.							
			-	0.25		D		СН	CLAY, high plasticity, dark grey, with organics and sand.		М					
			- 4	-		D							 			
		▼	_	0.75 -		D		СН	Sandy CLAY, high plasticity, blue green, firm.	1	N				Earthy odou	r
			-	1-		D										
			-	1.25		D		СН	Sandy CLAY, high plasticity, pale grey.							
			- 3	-		D										
			_			D										
			_	-		D			END OF BOREHOLE AT 2.00 m							
			- 2	-												
			-	- 3-												
			-	-												

Parsons Brinckerhoff Australia PtyLtd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

BOREHOLE NO.

IC YEA	0 NR5 @												SHEET 1 OF 1
Client: Project: Borehole Lu Project Nur		DBNGP Loop 10 Kwinana 2145167) AS a		omi	inees Pty Ltd					te Comn te Comp corded E g Checke	leted: 3y:	04/11/05 04/11/05 KS JP
Drill Model/ Borehole D		Hand Au 75 mm	uge	er		Hole Angle: 90° Bearing:	Surface RL: 3.5 m Co-ords: E 390645 N 642						n
	nole Inforn		-			Field Materia							•
1 2 3	4		6	7	8	9		13					
METHOD SUPPORT WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE			HAND PENETROMETER R (kPa)	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
	<u> </u>		/S	0	э́ CL- CH	CLAY, organic, firm.		ž D	 S^VS БТ	58″≖ 	ΞΞΞ		
	- 0.25		D	 	CL- CH	LIMESTONE, decomposed, friable, white.							
	2 0.49		ľ									EOH	
	- 1 - 2 - 2 - 2 1 1 		D			LIMESTONE, white END OF BOREHOLE AT 0.50 m							
		This bor	reho	le log	shou	Ild be read in conjunction with Parsons Brincker	hoff's a	1000	mpanv	ina «	standard n	otes.	

D
 100 YEARS ®

Parsons Brinckerhoff Australia PtyLtd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

10-22

		ŸĒ.	ARS ©										SHEET 1 OF
Boi	ject eho	le L	ocation: mber:	DBNG Loop Kwina 21451	10 A ana	ASS	Iom	nees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	bleted: 03/11/05 By: KS
Dril	I Mc	del/	Mounting: Diameter:		Aug			5	Surfa Co-o		RL: 6	.2 m	N 6423045
			hole Inforr					Field Material				. 550707	14 0423043
1	2	3		5	6	7	8			10	11	12	13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE		HAND PENETROMETER R (kPa)	STRUCTURE AND ADDITIONAL OBSERVATIONS
ME	ร	Ś	D R	Ē	SA	5	SP	SAND, medium grained, pale brown, with some		й D	ST ST VST	ΞΗΫ́	
			- 6	-	D			humic organics, with silt, loose, friable.		M			
			0.50	-	D		SP	SAND, fine to medium grained, pale grey.					
				-	D			o, and, mile to modulin granica, pare groy.					
			- 1-		D								
			- 5	-	D				_	w			
		NFG		_	D								
		RFΦ\$E	- 2- - 4 - 3- - 3		D			END OF BOREHOLE AT 1.50 m					EOH

This borehole log should be read in conjunction with Parsons Brinckerhoff's accompanying standard notes.

D
 100 YEARS @

BOREHOLE NO.

		YE/	NRS @										SHEET 1 OF '
	ject eho	le L	ocation: mber:	DBNGP (WA) Nominees Pty Ltd Loop 10 ASS Folky Rd. 2145167D							Date Com Date Com Recorded Log Checl	pleted: By:	03/11/05 03/11/05 KS JP
			Mounting			er		Hole Angle: 90°	Surfac				
Bor			iameter:	75 mr	n			Bearing:	Co-or			5 N 64228	20
1	B	orel 3	nole Infor	mation 5	6	7	8	Field Materi			10		13
METHOD	SUPPORT		(w)	-	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE			STRUCTU OB	RE AND ADDITIONAL SERVATIONS
	Oddins	WATER	(₩) ¹ ² - - - - - - - - - - - - - - - - - - -	-				Silty SAND, brown, with organics, loose, friable				EOH	
א הווראלוווטון אטאומומ ר וא בעני			- 5 - -	-									
				This t	oreh	ole log	shou	Id be read in conjunction with Parsons Brinckerl	hoff's acc			notes.	

D	R
	100 YEARS ®

BOREHOLE NO.

	ect eho	: le L	ocatio		DBNG Loop Kwina 21451	10 A ana	SS	lom	inees Pty Ltd			C F	Date Com Date Com Recorded Log Check	pleted: By:	SHEET 1 C 03/11/05 03/11/05 KS JP
			'Mour Diame		Hand 75 mr		er		Hole Angle: 90°	Surfa Co-or			4.1 m	6 N 64225	00
					nation	n			Bearing: Field Materi				E 390990	0 IN 04223	09
1	2	3		4	5	6	7	8			0	11	12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		VS FR		VD D ETROM	STRUCTUR OBS	E AND ADDITIONA ERVATIONS
		V	- 4	-		D D D		SM	Silty SAND, brown, with organics, loose, friabl		N N				
			- 3	- 1- - - 2- -	-	D			END OF BOREHOLE AT 1.00 m					EOH	
			- 1	- 3-											

D
 100 YEARS @

BOREHOLE NO.

	ject eho	: le L	ocation: nber:		DBNG Loop Kwina 21451	10 A Ina		lomi	nees Pty Ltd			Date Com Date Com Recorded Log Check	oleted: By:	SHEET 1 OI 03/11/05 03/11/05 KS JP		
			Mountin		Hand / 75 mn		er		Hole Angle: 90° Bearing:		Surface RL: 8.7 m Co-ords: E 391132			N 6422355		
	В	orel	nole Info	orm	ation				Field Mater	rial De	scri	ption				
1	2	3	4		5	6	7	8	9		10	11 12		13		
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		NOI	VELATING SC FIE CVR D SC T MD SC T MD SC T MD HAND MENSION CONSISTENCY A HAND MENSION CONSISTENCY A HAND MENSION CONSISTENCY A HAND MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY A MENSION CONSISTENCY CONSISTENC	STRUCTUF OBS	RE AND ADDITIONA SERVATIONS		
			- 8						Silty SAND, brown, with organics, loose, friab	ble.	M		EOH			
			-	_					IId be read in conjunction with Parsons Brincke							

100 YEARS @

BOREHOLE NO.

		YEA	0 185 @											SHEET 1 OF 1
Pro Bo		le L	ocation: nber:	DBNG Loop 7 Kwina 21451	10 A na	SS	lomi	nees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	leted: 3y:	03/11/05 03/11/05 KS JP
	-		Mounting:					Hole Angle: 90°	Surfa	ce RL		3.4 m		-
Во			iameter:	75 mm	1			Bearing:	Co-o			391297	N 642220)3
1		orel 3	nole Inforr 4	nation 5	6	7	8	Field Mater			on 11	12		13
	2	3	4	5	0			9		REI	ATIVE			13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		VS FB VL S VL		HAND PENETROMETER R (kPa)	STRUCTURI OBSI	E AND ADDITIONAL ERVATIONS
				-	D		SW	SAND, medium grained, pale grey, well sorted	a. I	0 				
			-13	-	D									
					D									
		•			D									
			- 1-		D					N 				
			-12 -	-	D			END OF BOREHOLE AT 1.25 m					EOH	
			- 2-	-										
			-11 ·	-										
וכתפוווטוו המטומוומ ו וז בוע. יייי			- 3-	-										
			-10	This b	oreh		shou	Id be read in conjunction with Parsons Brincker	rhoff's ac		 nvina s	standard n	otes	

D	B
	100 YEARS @

BOREHOLE NO.

Bor	ject: eho	le L	ocation: nber:	DBNG Loop 7 Kwina 21451	10 A na		omi	nees Pty Ltd	Da Re	te Comm te Comp corded B g Checke	leted: 03/11/08	
			Mounting: iameter:	Hand <i>I</i> 75 mm		ər		Hole Angle: 90° Surface RL Bearing: Co-ords:		.9 m	N 6422083	
			nole Inform					Field Material Description		. 391430	N 0422005	
1	2		4	5	6	7	8	9 10	11	12	13	
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	OUSC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION			STRUCTURE AND ADDITI OBSERVATIONS	ONAL
		•	9 				SP	SAND, medium grained, yellow brown.			EOH	
			- 8 2- 					Id be read in conjunction with Parsons Brinckerhoff's accompa				

D	R
	100 YEARS ®

BOREHOLE NO.

Boi Pro	ject ehc ject	ble L t Nu	ocation: mber:	Loop 1 Kwina 214516	10 A na 67D	SS	omi	nees Pty Ltd	Date Commenced:03/11/05Date Completed:03/11/05Recorded By:KSLog Checked By:JP
			Mounting: Diameter:	Hand A 75 mm		er		Hole Angle: 90° Surface RL Bearing: Co-ords:	: 10.7 m E 391593 N 6421936
Ē			hole Inforn					Field Material Description	
1	2	3	4	5	6	7	8		1 12 13 ATIVE <u>Y</u>
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	ATTME INFORMATION STRUCTURE AND ADDITIONAL O O O O O O O O O O O O O O O O O O O
			-	-	D		SM	Silty SAND, medium grained, brown, moderately bill bill bill bill bill bill bill bi	
			-	-	D				
			-10	-	D				
			-		D			W	
					D			END OF BOREHOLE AT 1.00 m	EOH
			- 9 - - - -	-					
			- - - 8 -						
			3-	-					

=	100 YEARS @

BOREHOLE NO.

Bore Proj Drill	ject: ehol ject Mo	le Lo Nur del/I	Loop 10 ASS I Location: Kwinana umber: 2145167D el/Mounting: Hand Auger Hole Angle: 90° Surface RL:									ate Comm ate Comp ecorded B g Checke 4.6 m	03/11/05 03/11/05 KS JP	
3ore	əhol	le D	Diameter:	75 mm	n				o-orc			391740	N 642179	7
			hole Infor				_	Field Material D						
1	2	3	4	5	6	7	8	9	10		11 LATIVE	12 12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	DEPTH(m) FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	VS FB		HAND PENETROMETER ((kPa)	OBSE	E AND ADDITIONAL ERVATIONS
			240-		\square		OL	TOPSOIL SAND, medium grained, pale grey, with root organics, friable.	D				Earthy Odor	
			0.10		D		SP	SAND, medium grained, pale grey.	1					
			 -	-	D									
			-14	-	D									
									M					
			- 1		D									
					D									
			-		D		$\left \right $	END OF BOREHOLE AT 1.25 m	W				EOH	
			Ī											
			-13											
			Γ	-										
			- 2	-										
			F	-										
			F	-										
			-12	-										
			F	-										
			- 3	-										
			-	-										
			F	-										

P	D
	100 YEARS @

BOREHOLE NO.

		10 YEA	0 185 @													SHEET 1 OF 1
Project:Loop 10 /Borehole Location:KwinanaProject Number:21451670Drill Model/Mounting:Hand Aug					Loop Kwina	10 A Ina	ASS	lomi	nees Pty Ltd				Da Re	ite Comn ite Comp corded E g Checke	leted: 3y:	03/11/05 03/11/05 KS JP
							er		5	urfac				.7 m		
Bor	Borehole Diameter: 75 mm Borehole Information									o-or				391890	N 64216	45
1	2	oreł 3	nole	Inforn 4	nation 5	6	7	8	Field Material D			otio 11		12		13
							GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION			RELA DENS CONSIS	TIVE ITY / TENCY	OMETER	STRUCTUR	E AND ADDITIONAL ERVATIONS
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAP	MSC S	Silty SAND, fine to medium grained, brown, with			от Сот Сот	NST ⊠ VST 0	HAND PENET (kPa)		
			-	0.20		D			clay.							
			-	0.20		D		SP	SAND, medium to coarse grained, brown.	N	Л					
			-	-												
			- 5	-	-	D				v	V					
			-	-		D										
						D	· · · · · ·		END OF BOREHOLE AT 1.00 m						EOH	
			_	-	-											
			_	-	-											
			4	-	-											
			- 4	-	-											
			-	2-	-											
			-	-	-											
			-	-	-											
			-	-	-											
			- 3	-	-											
			-	3-	-											
			-	-	_											
			-	-												
L																
					This b	oreh	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff	s aco	com	ipan	ying	standard n	otes.	

D	
	100 YEARS ®

BOREHOLE NO.

			YEA	0 R5 @											5	SHEET 1 OF 1
Pr		ect:				Loop	10 A		lom	nees Pty Ltd			Dat	e Comm e Comp	leted:	03/11/05 03/11/05
				ocatic		Kwina								corded B Checke		KS JP
Project Number: 2145167D Drill Model/Mounting: Hand Auger Borehole Diameter: 75 mm								er	Hole Angle: 90° Surface RL:).2 m	N 6421441	
	Borehole Information									Bearing: Co Field Material D				392122	IN 0421441	
1		2	3	4		5	6	7	8	9		0 11		12		13
METHOD		SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		RELATIN DENSITI CONSISTE CONST		HAND PENETROMETER (kPa)	STRUCTURE / OBSEF	AND ADDITIONAL RVATIONS
					0.05		DD		OL SP CH	TOPSOIL HUMUS, with fine to medium grained silty sand. SAND, dark brown. Sandy CLAY, high plasticity, dark brown.		D 				
				_	-		D									
			•	_	0.75		D		SC	Clayey SAND, medium to coarse grained, pale brown grey.	v	V 				
				_	1-		D									
01/12/05				- 9	-		D									
GEOTECH.GD1 01/12/05				-	-		D									
				-	-		D									
HOLE LOG BO				- 8	2-		D								EOH	
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ				_	-					END OF BOREHOLE AT 2.25 m						
d. Version 5.1 ENV				-	-											
tt Australia Pty Lti				- 7	3-											
sons Brinckerno				-	_											
C Par						This b	oreh	ole log	sho	Ild be read in conjunction with Parsons Brinckerhoff's	s ac	companyi	ing s	tandard no	otes.	

D	R
	100 YEARS @

BOREHOLE NO.

Pro	ject eho ject	le L Nui	ocation: mber:	Loop 7 Kwina 21451	10 A na 67D	SS	omi	nees Pty Ltd		C F L	Date Comr Date Comp Recorded E Log Checke	nenced: bleted: 3y:	03/11/05 03/11/05 03/11/05 KS JP
			Mounting: iameter:	Hand <i>I</i> 75 mm		er		Hole Angle: 90° Sur Bearing: Co-		e RL: s:	9.4 m E 392235	N 642132	9
			nole Inforn					Field Material De					
1	2	3	4	5	6	7	8	9	10	11	12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOI			STRUCTURE OBSE	AND ADDITIONAL RVATIONS
			0.10			$\langle \langle \langle \langle$	OL	TOPSOIL Silty SAND, medium to fine grained.	D				
					D		СН	Sandy CLAY, high plasticity, red brown.	М				
			- 0.20		D		SP	SAND, medium to coarse grained, yellow.					
						· · · · · · · · · · · · · · · · · · ·							
					D								
		V			D		•						
			- 1-		D				W				
				1		••••		END OF BOREHOLE AT 1.25 m				EOH	
			- 8 - - 2- 										
			- 6 -	This b	oreho		shou	Id be read in conjunction with Parsons Brinckerhoff's a	acco			otes.	

D	R
	100 YEARS @

Borehole Location:

Borehole Diameter:

Drill Model/Mounting: Hand Auger

Borehole Information

4

Project Number:

2 3

WATER RL(m) DEPTH(m)

0.10

Client:

1

METHOD SUPPORT

Project:

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

									10-33
									SHEET 1 OF 1
DBNG Loop Kwina 21451	10 A na		omi	nees Pty Ltd	y Ltd				
Hand	-	er			Surfac		7 m		
75 mm	1				Co-ord			8 N 64211	54
ation				Field Material					
5	6	7	8	9	10	11 RELATI	12 m		13
FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE		r D VD ^{XZ^X VD VD VD VETROMETE a)}		E AND ADDITIONAL ERVATIONS
		\overline{M}	OL	TOPSOIL HUMUS, with fine to medium grained	D				
	D		СН	silty sand. CLAY, high plasticity, dark grey black, with silt, with iron cemented sand.	M				
	D								
	D		,						
	D								
	D			END OF BOREHOLE AT 1.00 m				EOH	

	-		СН	CLAY, high plasticity, dark grey black, with silt, with iron cemented sand.	M					
L L L L L L L L L L L L L L L L L L L	- - - - - - - - - - - - - - - - - - -			END OF BOREHOLE AT 1.00 m						- EC
EOTECH.GDT 01/12/05	-	-								
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05	- 5 2-	-								
.1 ENVIRONMENTAL BOREH	-	-								
off Australia Pty Ltd. Version 5	- 4 3- -	-								
Parsons Brinckerh	-	This borehole Ic	og sho	uld be read in conjunction with Parsons Brinckerhoff's	acco	omp)))) an	 yinç	g standard	notes

D	R
	100 YEARS @

BOREHOLE NO.

		YEA	DO ARS @												SHEET 1 OF
	ject: ehol	le Lo	ocatio		DBNG Loop Kwina 21451	10 A ana	ASS	lomi	inees Pty Ltd			Dat Red	te Comm te Comp corded B g Checke	leted: 3y:	03/11/05 03/11/05 KS JP
Drill	Мо	del/		nting:	Hand J 75 mn	Aug				urfac o-ord	e RL:	10	0.1 m	N 642098	
					nation				Field Material D				002000	11 072000	
1	2	3		4	5	6	7	8		10	11	1	12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELA DENS CONSIS BL S		HAND PENETROMETER (kPa)	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
			-10			D		SM	Silty SAND, fine to medium grained, with organics.						
			-	0.20 -		D		SM	Silty SAND, fine to medium grained, light brown.	M					
			-	-				•							
			-	-	-	D	•							
				1-	_	D		•							
			- 9	-	_	D		•							
GU/21/10			-	-	-	D		•		w					
- 1.6	\dashv	H	 			D		-	END OF BOREHOLE AT 1.50 m	+			 	EOH - Colla	psed borehole
I ENVIRONMENTAL BOREHOLE LUG BORELUGS.GFJ GEUTECH.GU			- 8	- 2- -	-										
Falsons brinckemon Australia Fry Ltg. version 5.1			- 7		- -	boreh			uld be read in conjunction with Parsons Brinckerhoffs				too dord pro	-100	

BOREHOLE NO.

		YE/	1 185 @										5	SHEET 1 OF
Bor	ject eho	le L	ocati nber		DBNG Loop Kwina 21451	10 A Ina	SS	lomi	nees Pty Ltd		D R	ate Comm ate Comp ecorded E og Checke	leted: 3y:	03/11/05 03/11/05 KS JP
Dril	I Mc	odel/		nting:	Hand A	Aug			0	Surface Co-ords	RL:	7.2 m	N 6420921	
					nation	-			Field Materia					
1	2			4	5	6	7	8	9	10	11	12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	NOIS	RELATIVE DENSITY/ CONSISTENC		STRUCTURE / OBSEF	AND ADDITIONAL VATIONS
			- 7	0.25		D		OL	TOPSOIL SAND, medium grained, dark grey, w monor root organics. SAND, medium grained, pale grey brown white.					
			_	-	-	D		SP	SAND, medium grained, paie grey brown white.	M				
			-	-		D								
			_	-		D								
			- 6	1-		D								
		▼	-	-		D				14/			-Hydrogen sul	fide odour
			-	1.75	-	D				W			.,	
			-	- 2-		D		SW	SAND, medium grained, pale brown.					
			- 5	-	-	D							ЕОН	
			4	- - 3-		D			END OF BOREHOLE AT 2.25 m					
			- 4	-	This b	oreho	ole log	shou	Ild be read in conjunction with Parsons Brinckerh	off's accor		standard no	otes.	

pp
100 YEARS ®

BOREHOLE NO.

		-IC YE)(185 @										SHEET 1 OF
	ject eho	le L	ocat nbe		Loop 10 ASSDate ConKwinanaRecorded2145167DLog Chec						Date Comr Date Comp Recorded E Log Check	oleted: By:	03/11/05 03/11/05 KS JP
	-				Hand		er		Hole Angle: 90° Surface	e RL:	7.6 m		••
				eter:	75 mm	-			Bearing: Co-ord			N 642097	0
			nole		nation				Field Material Desci				
1	2	3		4	5	6	7	8	9 10		12 VE 12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL				STRUCTURE OBSE	AND ADDITIONAL RVATIONS
			-	-	-	D		SM	Silty SAND, medium grained, brown.				
			-	-	-	D							
			- 7	-	-	D							
			-	-	-	D							
			_	1.00 -1		D		SC	Clayey SAND, medium grained, dark brown.				
			_	1.40	-	D		SC	Silty SAND, medium grained, very dark brown		 	-Sulfuric odo	ur
лр. Цр		N F G Y H	6			D			black, with minor organics.			EOH	
		Ϋ́	5	2-					END OF BOREHOLE AT 1.60 m				
			-	-	This b	oreh	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff's acco	 	 ing standard n	otes.	

D
 100 YEARS ®

BOREHOLE NO.

Client: Project: Borehole Project N			DBNG Loop Kwina 21451	10 A Ina		lomi	nees Pty Ltd		Date Comr Date Comp Recorded I Log Check	oleted: By:	26/10/05 26/10/05 KS JP
Drill Mode Borehole			Hand / 75 mn		er		Hole Angle: 90° Bearing:	Surface RL: Co-ords:		N 642072	2
		le Inforn		-				rial Descriptio			-
	3	4	5	6	7	8	9	10 1	1 12		13
METHOD SUPPORT	WATEK RI (m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	. ₩	ST MD VST D HAND PENETROMETER (kPa)	STRUCTURE OBSE	AND ADDITIONA RVATIONS
	-1-1	0.75		D D D D		SP	SAND, medium grained, dark brown, with organics, moderately well sorted.				
	-	9 - - -	-	D			SAND, as above grading to no organics.			ЕОН	
		- 8 - 3-									

BOREHOLE NO.

Pro Bo Pro	Client: DBNGP (WA) Nom Project: Loop 10 ASS Borehole Location: Kwinana Project Number: 2145167D Drill Model/Mounting: Hand Auger				10 A na 67D	SS	lomi		Date Cor Recorde Log Che	d By: KS cked By: JP
			Mounting: Diameter:	Hand A 75 mm		er		Hole Angle: 90° Surface RL Bearing: Co-ords:		90 N 6420627
_			hole Inforn					Field Material Description		1
1	2	3	4	5	6	7	8	9 10 1 REL	11 12 ELATIVE 12	13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	H H ND PAND	STRUCTURE AND ADDITIONAL OBSERVATIONS
					D		SP	TOPSOIL SAND, dark brown.		
			- 0.20	-		$\rangle\rangle\rangle\rangle$				
							SP	SAND, medium grained, brown, moderately well sorted.		
					D		ŀ			
							[
				-	D					
						· · · · ·	-			
			-10 0.80	-		· ·	SW	SAND, medium grained, white, well sorted.		
					D					
			- 1-	-						
					D					
12/05					D		-			
01/				-			ŀ			
1.GD							[
				-	D					
CHC CHC										
GPJ			- 9 -	-			[
250					D		ŀ			
OKEL			- 2-	ļ						
й S							-			
			L		D					
(EHO					\vdash		ŀ			
Э́Я Н					D					
-NIA			[-]						
JNME							ŀ			
NIK(-	D					
sion 5			- 8 -	-			1			
I. Ver		N			D		[
ty Ltc		NFGWU	3-		D		-	END OF BOREHOLE AT 3.00 m		EOH
		Ĕ								
Austr				-						
erhoff										
rinck										
ons B			[
				This b	oreho	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff's accompar	anying standar	d notes.

BOREHOLE NO.

Proj	ect: ehol ect	e Lo Nur	ocation: nber:	Loop 7 Kwina 21451	10 A ina 67D	SS	omi	nees Pty Ltd			Dat Rec Log	te Comm te Comp corded B g Checke	leted: ;y:	26/10/05 26/10/05 KS JP
			Mounting: iameter:	Hand <i>J</i> 75 mm		er			Surfac Co-orc	e RL: ls:		1.2 m 392854	N 6420545	i
			nole Inform					Field Material	Desc					
1	2	3	4	5	6	7	8	9	10			12 ℃		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELA DENS CONSIS EL C		HAND PENETROMETER R (kPa)	STRUCTURE / OBSEF	AND ADDITIONAL VATIONS
	<i>x</i>		<u>e</u> <u>a</u> -11 - - 1 - - 1- - 1- - 1- - 1- - 1- -					SAND, medium grained, white, well sorted.					EOH	
				This h	oreho		shou	ld be read in conjunction with Parsons Brinckerhoff	fs acc		/ina s	tandard no	otes.	

BOREHOLE NO.

SHEET	1	OF	1

Client: Project: Borehole Locatio Project Number:	Loop 10	ASS	inees Pty Ltd			Date Comm Date Comp Recorded B Log Checke	leted: sy:	26/10/05 26/10/05 KS JP
Drill Model/Moun		ger	Hole Angle:	90°	Surface RL:	12.5 m		
orehole Diamet		_	Bearing:		Co-ords:	E 392930	N 642045	52
Borehole Ir 1 2 3 4	formation 5 6	7 8	 9	eld Materi	10 11	10		13
METHOD SUPPORT WATER RL(m)	DEPTH(m) FIELD TEST SAMPLE	BOL	SOIL/ROCK MATERIAL FIELD D	ESCRIPTION	REAT DENSI CONSIST REAT REAT CONSIST CONSIST CONSIST CONSIST CONSIST CONSIST		STRUCTURE	E AND ADDITIONAL
		SP	SAND, medium grained, dark brov organics, moderately well sorted. SAND, medium grained, white, we		M			
— 10	- D - D 3-		END OF BOREHOLE AT 2.75 m		W		EOH	
-	-							

BOREHOLE NO.

ore	ect: ehol	le Lo	ocation: nber:		DBNGP (WA) Nominees Pty LtdDate Commenced:Loop 10 ASSDate Completed:KwinanaRecorded By:2145167DLog Checked By:								leted: 3y:	26/10/05 26/10/05 KS JP		
			Mountin iameter		Hand 75 mr		ər		Hole Angle: 90° Surfa Bearing: Co-o			ace RL: ords:		1.7 m 392993	3 N 6420375	
		oreh 3	nole Info 4	orm		6	7	8	Field Materi		5Cr 10	iptior		10		13
1 METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		STURE			HAND PENETROMETER 5 (KPa)	STRUCTUR OBS	E AND ADDITIONAL
_	0,	1	_	_		D		SP	SAND, medium grained, pale brown, moderate well sorted.		D					
			_	_		D										
			- 0.50	_		D		SW	SAND, medium grained, white, well sorted,		М					
			-	-		D										
			-	1-		D										
			-	-		D		· · ·								
			-10	_		D										
			-	2-		D										
		▼	-	-		D					W					
			_	-		D									ЕОН	
			- 9						END OF BOREHOLE AT 2.50 m							
			_	3-												
			_	_												

D	R
	100 YEARS @

BOREHOLE NO.

Proje	ect: ehol ect	: le Lo Nur	ocation mber:	ו:	Loop 10 ASSDate CoKwinanaRecorder2145167DLog Che									SHEET e Commenced: 26/10/0 e Completed: 26/10/0 prded By: KS Checked By: JP 1 m		
			/Mountir Diamete		Hand A 75 mm	-	er		Hole Angle: 90° Bearing:	Surfac Co-orc				N 642029	1	
			hole Inf			<u> </u>	<u> </u>	—	Field Materia					•	<u> </u>	
	2	3	4	\square	5	6	7	8	9	10) 1	1	12 12		13	
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	VS FB S VL	ATIVE USITY / ISTENCY ATIVE USITY / ISTENCY ATIVE USITY / ISTENCY ATIVE ISTENCY ATIVE ISTENCY ATIVE ISTENCY ATIVE ISTENCY		STRUCTURE OBSE	AND ADDITIONAL RVATIONS	
			-11		-	D		SP		D						
			0.25		-	D		SP	SAND, medium grained, white.	М						
			-		-	D										
			-	1_		D				W						
			-10	1-	-	D								ЕОН		
			- 9		-	D			END OF BOREHOLE AT 1.25 m					EUT		
רמיסטוא טוווגאפווטו אשאמומרוץ בע. עפוסטו ט.ו באיואטאואבויואב סטאברטסט סייט			- 8													

D	R
	100 YEARS ®

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

SHEET	1	OF	1

Bore	ect: ehol	le Lo	ocatio		DBNG Loop Kwina 21451	10 A ana	SS	omi	nees Pty Ltd	Da Re	ate Comm ate Compl ecorded B og Checke	leted: sy:	26/10/05 26/10/05 KS JP
			Moun		Hand / 75 mn		er		Hole Angle: 90° Surface RI Bearing: Co-ords:		l2.3 m = 393133	N 642020)5
					nation	-			Field Material Descripti		_ 000100	11 0 12 0 2 0	
1	2	3		4	5	6	7	8	0 40		12 07		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		HAND PENETROMETER	STRUCTUR OBS	E AND ADDITIONA ERVATIONS
			_	0.05		D		SP	TOPSOIL D SAND, medium grained, white, well sorted.				
			-12	-									
			_	-		D							
				_		D							
		▼	_	-					W				
			-	4		D							
			_			D			END OF BOREHOLE AT 1.00 m			EOH	
			-11	-									
				-									
				-									
			-	_									
			-	2-									
			-	2									
			-10	-									
			_	-									
				-									
			-	-									
			_	3-									
			_										
			- 9	-									
				-									
					This b	ooreh	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff's accompa	anying	standard no	otes.	

D	R
	100 YEARS ®

BOREHOLE NO.

Bor Proj	ject: ehol ject	le Lo Nur	ocation: mber:	Loo Kw 214	DBNGP (WA) Nominees Pty LtdDate Commenced:Loop 10 ASSDate Completed:KwinanaRecorded By:2145167DLog Checked By:									
			Mounting Diameter:		nd Au mm	Jge	ŧ٢		Hole Angle: 90° Bearing:	Surfa Co-or	ce RL: ds [.]		2 N 64201	20
			nole Info			┓		—	Field Mater					
1	2	3	4	5		6	7	8	9		0 11	10		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m) FIFL D TFST		SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		RELA DENS CONSIS CONSIS CONSIS		STRUCTUR OBS	RE AND ADDITIONAL SERVATIONS
			_		[D .		SP	SAND, medium grained, pale brown.					
		▼			[
			-			D .				ľ	V 			
			-14	1					END OF BOREHOLE AT 1.00 m				- EOH	
			-	-										
			-13 - - -	2										
			12 - -	3-										

=	100 YEARS @

BOREHOLE NO.

		764	DO ARS ®											SHEET 1 OF '
	ject eho	le L	ocation: mber:	DBNG Loop Kwina 21451	10 A Ina		omi	nees Pty Ltd			Da Re	te Comn te Comp corded E g Checke	leted: 3y:	26/10/05 26/10/05 KS JP
Drill	Mo	odel/	Mounting: Diameter:		Aug	er		Hole Angle: 90° Bearing:	Surfa Co-c		RL: 1	4.2 m	N 642004	
			hole Inforn		-			Field Materi						
1	2	3	4	5	6	7	8	9		10	11	12 12		13
МЕТНОD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE	RELATIVE DENSITY / CONSISTENCY BL S S S L S H S S L S H	HAND PENETROMETER R (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
							SM	Silty SAND, medium grained, grey brown, moderately well sorted.		D				
			0.10 	-	D		SW	SAND, medium grained, white, well sorted.		М				
				-	D									
				-	D									
					D					W				
			- 1-		D									
		–	-13 -	-	D			END OF BOREHOLE AT 1.25 m					EOH	
D Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05														
Parsons Brir				This b	oreho	ole log	shou	Id be read in conjunction with Parsons Brincker	hoff's a	ICCOI	mpanying s	standard n	otes.	

BOREHOLE NO.

Pr Bo	Client: DBNGP (WA) Non Project: Loop 10 ASS Borehole Location: Kwinana Project Number: 2145167D Drill Model/Mounting: Hand Auger								nees Pty Ltd	Date Commenced:26/10/05Date Completed:26/10/05Recorded By:KSLog Checked By:JP			
				Mounting: iameter:	Hand / 75 mn		er		Hole Angle: 90° Surface RL Bearing: Co-ords:	L: 1	1.6 m	N 6419985	
		Bo	oreł	nole Inforn	nation				Field Material Description	ion			
1		2	3	4	5	6	7	8	9 10	11	12 07	13	
METHOD		SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION 법 문가.			STRUCTURE AND ADDITIONAL OBSERVATIONS	
				- 0.20	-	D		SM	Silty SAND, medium grained, grey brown, moderately well sorted.				
					-	D							
_			▼					[FOH	
				11 - - 1- - 1- 1- 		D			END OF BOREHOLE AT 0.50 m W A			EOH	
				- 3- 	-				Ild be read in conjunction with Parsons Brinckerhoff's accompa				

BOREHOLE NO.

			YEA	0 IRS @											SHEET 1 OF 1
Pr	ient oje	ct:				Loop	10 A		lomi	nees Pty Ltd			Date Co	mmenced: mpleted:	26/10/05 26/10/05
				ocation nber:	:	Kwina 21451							Recorde	d By: cked By:	KS JP
Dr	ill N	//oo	del/	Mountii iamete		Hand 75 mn	Aug			Hole Angle: 90° Bearing:	Surfa Co-c	ace RL:	11.3 m	-	
Г				nole Inf			•			Field Mater				74 10 04100	
1		2	3	4		5	6	7	8	9		10 11	12		13
METHOD		SUPPORI	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE ST CONSIST CONSIST CONSIST CONSIST MD CONSIST MD CONSIST CONS		STRUCTUI	RE AND ADDITIONAL SERVATIONS
				- 0.20	,		D		SM	Silty SAND, medium grained, grey brown, moderately well sorted.					
				-11	_		D		SW	SAND, medium grained, white, well sorted.					
				-	_		D								
			N	_											
			л⊧ф≳п		-		D			END OF BOREHOLE AT 0.75 m				EOH	
				-											
					1-										
				-											
					-										
C0/7				-10											
20					-										
DD-110				-											
				_											
					_										
0000				_											
					2-										
				-											
					-										
				- 9											
					-										
				-											
					-										
- -				-											
					-										
LLU. V				-	2										
larıy				_	3-										
Ausua															
				- 8	_										
				-	_										
						This b	oreh	ole log	shou	Id be read in conjunction with Parsons Brincker	rhoff's a	ccompany	ing standar	d notes.	

BOREHOLE NO.

Proj Bor		le L	ocation: mber:	:	DBNG Loop Kwina 21451	10 A Ina		lomi	nees Pty Ltd		Da Re	te Comn te Comp corded E g Checke	lleted: By:	26/10/05 26/10/05 KS JP
			Mountir iametei		Hand / 75 mn		er			urface o-ords		3 m 393431	N 64198	39
			nole Inf	orm					Field Material					
1	2	3	4		5	6	7 00	DL ∞	9	10	11 RELATIVE DENSITY / CONSISTENCY	12 22 12 12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOI	VS FB S VL ST MD VST D H VD	HAND PENETROMETER (kPa)		E AND ADDITIONA ERVATIONS
			-	_		D		SM	Silty SAND, medium grained, grey brown, moderately well sorted.	D				
		▼	-	_		D		SW	SAND, medium grained, white, well sorted.	M				
			-	-		D		•		W				
			_	_		D			END OF BOREHOLE AT 0.75 m				EOH	
			-12 - -	1										
			-11	2-										
			-	_										
			—10 	3- - -										

BOREHOLE NO.

Bo	oje ore	ect: hol	e Lo	مرتجع ocation: nber:	DBNG Loop 7 Kwina 21451	10 A Ina	SS	lomi	nees Pty Ltd		Da Re	ate Comp ate Comp ecorded E og Checke	nenced: 26/* leted: 26/* By: KS	=T 1 OF 7 10/05 10/05
				Mounting: iameter:	Hand / 75 mm		er		Hole Angle: 90° Surfa Bearing: Co-or			1.2 m 393540	N 6419710	
				nole Inforn					Field Material Des		iption			
1	Ŧ	2	3	4	5	6	7	8	9 1	10	11 RELATIVE	12 12	13	
METHOD		SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL		ШОШ	RELATIVE DENSITY / CONSISTENCY LC LC LC LC LS LS LS LS LS LS LS LS LS LS LS LS LS		STRUCTURE AND A OBSERVATIO	DDITIONAL ONS
					-	D		SM SW		D M				
		-	▼		-	D				w				
					-	D				•••				
	+				1	D			END OF BOREHOLE AT 0.75 m			+ +	EOH	
				- 1-	-									
				-10 -	-									
					_									
0.000				- 2-										
				- 9 -	-									
					-									
					-									
					-									
				- 3-										
				- 8 -	-									
					This h	oreb		sho	Id be read in conjunction with Parsons Brinckerhoff's ac	0.00	mpanving	standard n	otes.	

BOREHOLE NO.

			YEA	0 NRS @												SHEET 1 OF 1
	oje	ect		ocatio	<u></u>	DBNG Loop ⁷ Kwina	10 A		omi	nees Pty Ltd			Dat	te Comm te Comp corded B	leted:	26/10/05 26/10/05 KS
				nber		21451								g Checke		JP
Dr	rill	Мо	del/		nting:	Hand A		er		Hole Angle: 90° Bearing:	Surfa Co-o	ce RL: rds:	7.	.5 m	N 64195	28
Γ		B	oreł	nole l	nforn	nation				Field Mater	rial Des	criptio	n			
1		2	3		4	5	6	7	8	9		0 11 RELA	TIVE	12 12		13
METHOD		SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		RELA DENS CONSIS CONSIS CONSIS		HAND PENETROMETER (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
				-	0.20 — –		D		SM SW	TOPSOIL Silty SAND, fine to medium grained SAND, medium grained, yellow, well sorted.		O M				
				-	-		D			or and, medium grained, yenow, wen dorted.						
			▼	- 7	-		D					V 				
				_											EOH	
				- 6 - 5 5	1 - - 2 - - - - - - - - -	· · ·				END OF BOREHOLE AT 0.75 m						
J Parsons						This b	oreh	ole log	shou	ld be read in conjunction with Parsons Brincke	erhoff's ac	company	ying s	tandard no	otes.	

BOREHOLE NO.

Bor Pro	oject reho oject	t: ble L t Nui	ocation	:	Loop Kwina 21451	10 A ina 67D	ASS	lomi	nees Pty Ltd				Da Re Lo	te Comp corded E g Check	By:	SHEET 1 OF 26/10/05 26/10/05 KS JP
			/Mour Diame		Hand / 75 mn	-	er		Hole Angle: 90° Bearing:	Surf Co-c				.3 m 393828	N 641933	1
	В	ore	nole	Inforn	nation				Field Materia	al De		iptio	n			
1	2	3		4	5	6	7	8	9		10	1 REL/		12 12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOI	VS FB CO F S VL S S S S S S S S S S S S S S S S S	0 2 2 0 2	HAND PENETROMETER (kPa)	STRUCTURE OBSE	AND ADDITIONAL RVATIONS
			-	0.20 —	-	D		SM	TOPSOIL Silty SAND, fine to medium grained. SAND, medium grained, well sorted.		D					
			- 5	-	-	D		3	SAND, medium grameu, wen sontou.		Ivi					
			-	-	-	D										
				-	-	D										
		▼	-	1 — 1.05 —		D		SC	Clayey SAND, high plasticity, grey blue.		W					
c0/21/			- 4	-	-	D										
			-	-		D										
	\vdash	+	-		-	D			END OF BOREHOLE AT 1.75 m						EOH	
DURELOCO			-	2-	-											
			- 3	-	-											
יאריי			-	-	-											
			-	-	-											
			-	- 3-												
li Ausuana i			-	-	-											
איוואסטיון און איניאסטיי			- 2	-	_											
la ra		<u> </u>	<u> </u>		This b	oreh	ole log	shou	Id be read in conjunction with Parsons Brinckerh	noff's a	acco	mpan	ying s	standard n	otes.	

BOREHOLE NO.

Bore	ect: eho	le Lo	ocat nbe		DBNG Loop Kwina 21451	10 A ana	SS	lomi	nees Pty Ltd			Da Re	ate Comp ate Comp ecorded E og Checke	oleted: By:	25/10/05 25/10/05 KS JP
				nting: eter:	Hand 75 mr		er		Hole Angle: 90° Bearing:	Surfa Co-c			6.3 m = 393988	N 641909	1
					nation				Field Materi				_ 000000		•
1	2	3		4	5	6	7	8	9		10	11	12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOI			STRUCTURE OBSE	AND ADDITION RVATIONS
			_	-		D		SO	SAND, pale brown.		D				
			- 6	0.25			Т.Х	СН	Silty CLAY, high plasticity, pale grey.		М				
				-	_	D	ľ I	ł							
			-			-									
				-	_	D		1							
			-												
				-		D									
			_	1.00 1- 1.01					·····						
			-	1.01		D		СН	as above with minor coffee rock Sandy CLAY, high plasticity, pale brown.						
			- 5			D									
			_												
				-	_	D	· · · / ·	1							
			-												
				-	-	D	· · / · ·								
			-	2-			$\left(\begin{array}{c} \cdot & \cdot \\ \cdot & \cdot \\ \cdot & \cdot \end{array}\right)$	1							
			_	2-											
				-	_	D									
			- 4				(* / / .	1							
		Ň		-	-	D									
-		ш≲фтΖ				D	: ://:	сн/	Sandy CLAY, high plasticity, blue. END OF BOREHOLE AT 2.50 m	$-\uparrow$				EOH	
				-	1										
				-											
			_												
				3-	-										
			-												
			2	-	1										
			- 3	-											

D	R
	100 YEARS @

BOREHOLE NO.

Bo Pro	oje oreł oje	ect: hole ect	: le Lo Nur	ocatio mber:		Loop 7 Kwina 21451	10 A ana 67D	ASS	lomi	inees Pty Ltd	Curfe		Da Re Log	te Comp corded E g Checke	Зу:	SHEET 1 OF 25/10/05 25/10/05 KS JP
				'Mouni)iamet		Hand / 75 mm		er		3	Surfa Co-o			.6 m 394047	N 641888	86
Г						nation		<u> </u>		Field Materia						
1	_	2	3	4		5	6	7	8	9		10	11	12 01		13
METHOD		SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE VS FB R	RELATIVE DENSITY / ONSISTENCY J J L S L S L S L S L	HAND PENETROMETER (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
				0	0.10	-	D		SP	TOPSOIL SAND, pale grey, with root organics. SAND, pale grey brown.						
				-	-	-	D									
				- 6	-	_	D									
				-	-	-	D									
				-	1-		D									
	\downarrow	\square	Σπ∂≶ш	<u> </u>			D			END OF BOREHOLE AT 1.25 m		i			EOH	
			Ϋ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́ΥΫ́	- 5 	- - - - - - -	-										
arsons Brinckeniuli Ausualia				-	-	-				uld be read in conjunction with Parsons Brinckerh						

D	R
	100 YEARS @

BOREHOLE NO.

			YEA	0 IFS @										SHEET 1 OF 1
F		ect:			Loop	10 A		omi	nees Pty Ltd			Date Comr Date Comp	leted:	25/10/05 25/10/05
				ocation: mber:	Kwina 21451							Recorded E Log Check		KS JP
Ľ	Drill	Мо	del/	Mounting: iameter:		Aug			Hole Angle: 90° Bearing:	Surfa Co-o	ce RL:	8.7 m	N 641888	
Г				nole Inform					Field Materia					
	1	2	3	4	5	6	7	8	9		10 11	10		13
	METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		RELATI DENSIT CONSIST CONSIST CONSIST CONSIST CONSIST CONSIST CONSIST		STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
								SP	TOPSOIL SAND, pale grey, with root organics.					
				- 0.10	_	D		SP	SAND, pale grey brown.					
				-	_	D								
				-	_	D								
				- 8	_			•						
				- 1-		D								
			N	-		D								
			ш≦фтΖ			D	· . · . · .		END OF BOREHOLE AT 1.25 m				EOH	
				- 7 - 2- - 2- 										
Parsons Brinckemott Australia Pty Ltd. Ve				- - -	- - This b	oreh	ole log	shou	Id be read in conjunction with Parsons Brinckerh	noff's ac		 	otes.	

P	ß
	100 YEARS @

BOREHOLE NO.

Pro Bo		ole L	ocation:	DBNGP Loop 10 Kwinan 214516	0 A na		omi	nees Pty Ltd			Da Re Loç	te Comn te Comp corded E g Checke	leted: 3y:	25/10/05 25/10/05 KS JP
			/Mounting: Diameter:	Hand A 75 mm)r			urfa D-O			4.6 m 394048	N 64183	07
			hole Inform					Field Material D				10		10
1	2	3	4	5	6	7	8	9	+	10	11 RELATIVE DENSITY / CONSISTENCY	12 12		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE	BENSITENCY CONSISTENCY BL CL CONSISTENCY BL CL CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY CONSISTENCY	HAND PENETROMETER (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
			0.05		D		SP SP	TOPSOIL SAND, pale grey, with some root organics. SAND, pale grey.						
			0.50		D		SP	SAND, pale brown sand.					Trace hydr	ogen sulfide odour
			-14 -		D									
			- 1-		D									
			- ·		D									
222					D									
		NFO	-13 -		D									
		G W E			D			END OF BOREHOLE AT 1.75 m					EOH	
			- 2-											
			-12 -	-										
			- 3-											

BOREHOLE NO.

Client: Project: Borehole Location: Project Number:	DBNGP (WA) No Loop 10 ASS Kwinana 2145167D			Date Comm Date Compl Recorded B Log Checke	leted: 25/10/05 by: KS
Drill Model/Mounting: Borehole Diameter:	Hand Auger 75 mm	0	urface RL: o-ords:	14.6 m E 204050	N 6418308
					N 0410300
Borehole Inform1234		Field Material D	10 11	10	13
METHOD SUPPORT WATER RL(m) DEPTH(m)		SOIL/ROCK MATERIAL FIELD DESCRIPTION	WOISTURE MOISTURE MD MD MD MD MD MD MD MD MD MD MD MD MD		STRUCTURE AND ADDITIONA OBSERVATIONS
 <u>₹</u> 6 8 7 6 6 6 6 6 6 6 6 6 6		5 TOPSOIL SAND, pale grey, with root organics. 7 SAND, medium grained, pale grey, well sorted. 7 SAND, pale yellow.	≥ ∞ω 50 D M I I I I I I I I I I I I I I I I I I I I I I I I I I I		
	D	END OF BOREHOLE AT 3.00 m			EOH

BOREHOLE NO.

Project: Loo Borehole Location: Kwi						NGP (WA) Nominees Pty Ltd op 10 ASS inana 5167D							Date Commenced: Date Completed: Recorded By: Log Checked By:			
			Mour		Hand	-	er		Hole Angle: 90°	Surface		13.6 m	N 04404			
SOLE			iame		75 mn	n			Bearing:	Co-ord		E 394055	N 64181	16		
1	2 B	3 3	-	nform	nation 5	6	7	8	Field Mater	ial Desci		12		13		
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELATIV DENSITY CONSISTE		STRUCTUF	RE AND ADDITIONA SERVATIONS		
			-			D		SP	TOPSOIL SAND, pale grey, with root organics SAND, pale grey brown white.	<u>}.</u>						
			- 13			D		SP	SAND, yellow.							
			-	- 1-		D										
			-	_		D										
			-12	_		D										
			-	2-		D										
		NE	-	_		D										
		лнфЯш	-11	_		D			END OF BOREHOLE AT 2.50 m				EOH			
			-	3-												
			-	_												

BOREHOLE NO.

			YEA	0 IRS @											SHEET 1 OF 1
	oje reł	ect: hole	e Lo	ocation:	Loop Kwina	10 A ana		omi	nees Pty Ltd			Da Re	ite Comn ite Comp corded E	lleted: By:	25/10/05 25/10/05 KS
	-			nber:	21451								g Checke	ed By:	JP
				Mounting: iameter:	Hand 75 mn	-	er		u	Surfac Co-ord			1.2 m 394063	N 64178	93
Г				nole Inform		-			Field Material						
1		2	3	4	5	6	7	8	9	10	1	1	12 12		13
METHOD		SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	RELA DENS CONSIS BJ S	805	HAND PENETROMETER R (kPa)	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
				0.05 — —11		D	2222	SP SW	TOPSOIL SAND, pale grey, with root organics. SAND, medium grained, pale grey, well sorted.	M					
				_	_	D									
				-		-									
			▼			D									
				- 0.80		D		SP	SAND, pale grey brown white.	W					
				- 1-	-	D		• • •							
	+	_		10	-	D			END OF BOREHOLE AT 1.25 m					EOH	
				- - - 2· - 9 -	-										
				- 3· - 8 -	Thic F	DOreh		sho	Ild be read in conjunction with Parsons Brinckerho				standard p	otes	

BOREHOLE NO.

Clie	ont:	YE.	ARS ®		DBNG	D //		lomi	nees Pty Ltd			Da	te Comr	nenced:	SHEET 1 OF 25/10/05
Pro Bor	ject eho	le L	ocation	:	Loop [.] Kwina	10 A Ina	SS					Da Re	ate Comp ecorded E	leted: 3y:	25/10/05 KS
	-		mber: 'Mountir		21451				Hole Angle: 90°	Surfac			g Checke 2.1 m	ed By:	JP
)iamete		75 mm		CI		Bearing:	Co-or				N 641769	92
1	B		hole Inf	orm											10
	2	3	4		5	0			3		R	ELATIVE ENSITY /	TER		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	MOISTURE	VS FB S VI		HAND PENETROMETER (kPa)		E AND ADDITIONAL ERVATIONS
			-12	_		D		SP	TOPSOIL SAND, pale grey, with some organic	s. D					
			0.25	;		D		SP	SAND, medium grained, pale grey.	M					
		▼	-	_				•		W					
			_	-		D		•							
				_		D	· · · ·		END OF BOREHOLE AT 0.75 m					EOH	
			-												
				1-											
			-11												
				-							İ				
2/05			-								İ				
T 01/1				-											
GEOTECH.GDT 01/12/05			-												
EOTEC			L												
				_											
OGS.C			Ļ												
OREL				2-											
00			-10												
-OLE				-											
BORE			-												
NTAL				-											
ONME			F												
INVIR				-											
n 5.1 I			Γ												
Versio			Ļ												
ty Ltd.				3-											
ralia P			- 9												
ff Aust.				-											
ckerho			F												
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ				-											
Parso	<u> </u>	1	1		This b	oreh	ole loa	shou	Id be read in conjunction with Parsons Brinckerh	noff's acc	:omp:	anyina	standard n	otes.	
Э											p				

D	R
	100 YEARS @

BOREHOLE NO.

Bor Pro	oject reho oject	t: ble L t Nu	Location: umber:	Loop Kwina 21451	o 10 A ana 167D	ASS)	lomi	inees Pty Ltd		Da Re Log	ate Comp ecorded I g Check	By:	SHEET 1 OF 25/10/05 25/10/05 KS JP
	reho	ole D	l/Mounting Diameter:	75 mr	m	er		Bearing: Co	o-ord	ls: E	2.2 m 394081	I N 64174	71
1	_							Field Material D	Descr		1 40		
			1	2 FIELD TEST	PLE 0	SOL	USC SYMBOL ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE			STRUCTUF	13 RE AND ADDITIONAL SERVATIONS
METHOD	SUPF	WATER	RL(m)	DEP.1	SAMPLE	GRAI				VS F ST N VST C	HANC PENE (KPa)		
			0.10- -12	-	D		SP	TOPSOIL SAND, dark grey, some root organics. SAND, medium grained, pale grey brown white.	D M				
			-	_	D								
			-	_	D								
		▼	, , + .	1-	D	-			W				
			-11	_	D		 	END OF BOREHOLE AT 1.25 m				EOH	
			- - -10 -	2-									
			- 3 - 9 -	3-				uld be read in conjunction with Parsons Brinckerhoff's					

BOREHOLE NO.

Bor Pro	ject eho ject	:: ble Lo : Nur	ocation: mber: Mountir	:	DBNGP (WA) Nominees Pty Ltd Date Commenced: Loop 10 ASS Date Completed: Kwinana Recorded By: 2145167D Log Checked By: : Hand Auger Hole Angle: 90° Surface RL: 17.4 m									SHEET 1 OF 25/10/05 25/10/05 KS JP	
)iametei		75 mm				Bearing:		ords:			N 641724	10
Ļ			hole Inf	orm			Ļ	1.0	Field Mater						10
1 МЕТНОВ	SUPPORT N	WATER 0	4 KL(m)	DEPTH(m)	5 FIELD TEST	SAMPLE 0	GRAPHIC LOG	USC SYMBOL ∞	9 SOIL/ROCK MATERIAL FIELD DESCRIPTION		STURE FB VL SUCS SUCS SUCS SUCS SUCS SUCS SUCS SUC	VST DM VST DM H VD HAND HAND PENETROMETER	a)	STRUCTUR	13 E AND ADDITIONAL ERVATIONS
ME	sul	WA	RL(DE	<u><u> </u></u>	SAI	B	SN SP	TORSOIL SAND dark grow with root oggoing			ST VST HAN PEN	KP (KP		
			0.05			D		SP SP	TOPSOIL SAND, dark grey, with root oganics SAND, pale grey brown white.						
			-17	_		D					W			-Earthy odou	ır
			[_		D			END OF BOREHOLE AT 0.75 m					EOH	
			-	- 1-		D									
			-	_											
			-16	_											
				_											
			-	- 2-											
			-	_											
			-15	_											
			-	_											
			_	-											
			-	3-											
			-14	_											

100 YEARS @

BOREHOLE NO.

		YE	DO ARS @													SHEET 1 OF 1
	ent:							lomi	nees Pty Ltd						nenced:	25/10/05
	ojec				Loop		SS								leted:	25/10/05
		ole L t Nu			Kwina 21451									ded E	3y: ed By:	KS JP
	-								Hole Angle: 90°	C		RL:	-		su by.	JF
				inting: eter:	Hand / 75 mn		er		Hole Angle: 90° Bearing:	Sun Co-			17 n E 39		N 64170	06
Г				Inform		-			Field Materi							
1	-			4	5	6	7	8	9		10	11		12		13
							g	ЪГ				RELATIV DENSITY CONSISTE	Έ ′/ ΝCY	PENETROMETER (KPa)		
	RT	~		(E	TEST	щ	IIC L(YMBC	SOIL/ROCK MATERIAL FIELD DESCRIPTION		URE			MON	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL			MOISTURE	ST ND ST ND		ENET Pa)		
V	l N	3	R		Ē	S)	ິ SP	TOPSOIL SAND, dark grey, with root oganics.		Ξ Μ	ຮັ∾⊤ທ	×⊥ ±	Ľ≚		
				0.05		D	·	SP	SAND, pale grey brown white.							
			_	-	-			[
						D										
			-	-												
			-	-	-	D		[
											W					
			-	-	-	D			END OF BOREHOLE AT 0.75 m						EOH	
												ÌÌÌÌ	į.			
			-16	1-									i –			
												ÌÌÌÌ				
			-	-	-								i –			
G0/7																
G0/Z1./1.0			-	-	-											
en I													i			
Г Ц			_	-	-											
GEO I ECH.GU																
GFJ G			_	_												
BURELUGS												Ìİİİ				
_			-15	2-	-											
۲ C C																
BUREHULE LUG			-	-	-							<u>i i i i</u>				
			-	-	-											
ENVIRONMENIAL																
NINO																
Version			F	-	1											
'ty Lta			-14	3-	-											
Australia P																
Aust			Ļ	-	-											
попт																
Incke																
ULS BI			F	-	1								i			
Farso		_			This h	oreh	ole loa	shou	ld be read in conjunction with Parsons Brincker	hoff's a	acco	mpanvii	ng stan	dard no	otes.	

BOREHOLE NO.

Pro Bor		t: ble Lo	Location:	DBNG Loop Kwina 21451	10 A ana	ASS	lomi	inees Pty Ltd			Date Com Date Com Recorded Log Chec	pleted: By:	SHEET 1 OF 25/10/05 25/10/05 KS JP
Dril	ll Mo	odel/	/Mounting: Diameter:	: Hand A 75 mm		jer		Hole Angle: 90° Bearing:	Surfac Co-or	ce RL: ds:	18.6 m	2 N 64168	02
			hole Inform			<u> </u>	—	Field Materi					•_
1				5	6	7	8	9		0 1	1 10		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		WUISIURE VS FB S VL F L	ST MD VST D HAND PENETROMETER R (kPa)		RE AND ADDITIONAL SERVATIONS
			0.05	-	D		SP SP	TOPSOIL SAND, dark grey, with root organics SAND, medium grained, pale grey brown white moderately well sorted.	e, N	<u>0</u>			
			-	_	D								
			-18	-	D								
			-	_	D								
			- 1-		D								
CU/21./LC			-		D								
GEOTECH.GDT 01/12/05			-17	-	D								
		NFQ≷n		-	D			END OF BOREHOLE AT 1.75 m				- EOH	
			- 2-	-									
00 5.1 ENVIRONMENIAL			- -16 -	-									
off Australia Pty Ltd. Veisir			- 3-	-									
			-	-				uld be read in conjunction with Parsons Brincker					

D	R
	100 YEARS ®

BOREHOLE NO.

		YE/	10 185 @											SHEET 1 OF 1
Boi	ject eho	le L	ocation: mber:	Lo Kv	BNGI oop 1 winai 14516	0 A na		omi	nees Pty Ltd		C F	ate Comp ate Comp ecorded E og Checke	lleted: By:	25/10/05 25/10/05 KS JP
Dril	I Mc	del/	Mountin	g: H a	and A	Auge	er		•	Surface	e RL:	18.1 m		
Boi			iameter		5 mm					Co-ord		E 394109	N 64166	16
1	2	orel 3	nole Info		5	6	7	8	Field Material	Desci 10	11	12		13
METHOD	SUPPORT	WATER	RL(m)		FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION	STURE		VD X D ETROMETER		E AND ADDITIONAL ERVATIONS
Ψ	ึ่ง	Š	R	ä	Ē	S₽	5	SP SP	TOPSOIL SAND, dark grey, with roots organics.	ž D	VS ST VST	T TRA		
			-18 0.10	_		D		SW	SAND, medium grained, pale grey brown white, well sorted.	M				
		-	_	_		D								
				_		D	· · · · · · · · · · · · · · · · · · ·			W				
			-	_		D								
			-	1-				• • •						
			-17	_		D								
G0/Z1/10			-	_		D								
				-		D	· · · · · ·		END OF BOREHOLE AT 1.50 m				EOH	
			-	_										
JKELUGS.(-	2-										
LE LOG BY			-16											
- BUREHU			-											
JNMENIAL			_											
			-	_										
			-	_										
stralla Pty L			-15	3-										
			_											
				_										
р Г				٦	This bo	oreho	ole log	shou	ld be read in conjunction with Parsons Brinckerhof	off's acco	ompanying	g standard n	otes.	

pp
100 YEARS ®

BOREHOLE NO.

		YE.	DO Ars ®												SHEET 1 OF 1
Bor	ject eho	le L	ocation: mber:	DBNG Loop Kwina 21451	10 A Ina		om	nees Pty Ltd				Da Re	te Comn te Comp corded E g Checke	oleted: By:	25/10/05 25/10/05 KS JP
			Mounting:			er		Hole Angle: 90°	Surf	ace	RL:		5.3 m	<i>ou _ j</i> .	
)iameter:	75 mm				Bearing:	Co-c	ords	S:	Е	394140	N 64164	50
			hole Inforr			_		Field Materia	al De			١			
1	2	3	4	5	6	7	8	9		10	RELAT DENSI CONSIST	IVE	12 22 11		13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE	CONSIST CONSIS		ETROMET	STRUCTUR OBS	E AND ADDITIONAL ERVATIONS
						$\langle \rangle \langle \rangle$	SP	TOPSOIL SAND, pale grey, with roots and organics, loose, friable.		D					
			- 0.10		D	· · · · · ·	SP	SAND, medium grained, pale grey, moderately well sorted, dense.		М					
			-15		D										
			-												
			-		D		•								
			. -	-	D										
			1-	_											
		NFOM M			D			END OF BOREHOLE AT 1.25 m						EOH	
GEOTECH.GDT 01/12/05		Ë	-14	_											
				-											
			2-	-											
AL BUKEF			-13	_											
VIRONMEN			-	-								 			
sion 5.1 EN			-	-											
Pty Ltd. Ver			- 3-												
off Australia			 .												
is Brinckerho			-12	-											
C Parson	1		1	This b	oreh	ole log	sho	Id be read in conjunction with Parsons Brinckerh	noff's a	acco	mpany	ing s	standard n	otes.	

BOREHOLE NO.

Bor	ject eho	: le L	ocation	1:	DBNG Loop Kwina 21451	10 A ana		om	nees Pty Ltd			Date C Date C Record Log Ch	omp ed E	By:	SHEET 1 OF 25/10/05 25/10/05 KS JP
			Mounti iamete		Hand / 75 mn		er		6	Surfa Co-o	ace RL: ords:			N 641629	10
			nole Int						Field Material					11 041020	
1	2	3	4	•	5	6	7	8	9		10 1	4 40			13
МЕТНОD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		MOISTURE VS FB SWL F L L	ST MD VST D H VD AND HAND PENETROMETER	(kPa)	STRUCTURI OBSI	E AND ADDITIONAL ERVATIONS
			0.0	5			<u>, , , , ,</u>	SP SP	SAND, medium grained, pale grey, with root organics.						
			-14	_		D			SAND, medium grained, pale grey, moderately well sorted.						
			-	_		D									
			-												
				-		D									
			-												
				-		D									
			-	1-											
			-13	1-											
				_		D									
			-			D									
		N F G⊗⊔				D								EOH	
		Ϋ́		- 2- -					END OF BOREHOLE AT 1.50 m						
			- 11 -												

P	B
—	100 YEARS @

BOREHOLE NO.

			YEA	O NRS @										SHEET 1 OF 1
С	lier	nt:			DBNG	iP (V	VA) N	om	nees Pty Ltd		D	ate Comn	nenced:	25/10/05
		ect			Loop				-			ate Comp		25/10/05
				ocation:	Kwina							ecorded E		KS
PI	roje	ect	Nu	mber:	21451	67D					Lo	og Checke	ed By:	JP
				Mounting: iameter:	Hand / 75 mn		er			rface -ords		17.3 m E 394474	N 641611	3
Г				nole Inform			I		Field Material D					
1	1	2	3	4	5	6	7	8	9	10	11	12		13
							(J)				RELATIVE DENSITY / CONSISTENC	H VU , HAND PENETROMETER ((KPa)		
		F		Ē	ST		GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION		CONSISTENC	OWE	STRUCTURE	AND ADDITIONAL
ģ		OR	£	(IH(m		ЫП	HIG	SYN	SOIL/ROCK MATERIAL FIELD DESCRIPTION	DI L	r S S S S S S S S S S S S S S S S S S S		OBSE	RVATIONS
E E		SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRA	lsc		MOISTURE	ST VST VST			
F	-		_	0.05		0,	$\overline{\gamma}\overline{\gamma}\overline{\gamma}$	SP	TOPSOIL SAND, medium grained, pale grey, with	M				
				-		D		SP	<u>root organics.</u> SAND, medium grained, pale grey, moderately	1				
				-				[sorted.					
								[
				-17										
				-	-	D								
				_										
				_				-						
						D		[
				_				[
				-	-			[
				-		D		ŀ						
			▼	1									EOH	
						D			END OF BOREHOLE AT 1.00 m	W			LOIT	
				-							iiii			
				-										
G0/2				-16							<u> </u>			
/21/10				-										
_											iiii			
Ч.С				-										
GEOLECH.GD				-	-									
C L L				-										
ריי				-							<u>i i i i i</u>			
פאינ														
SUKELUGS														
2 2 2				2-										
0.0				-										
LEL				-	-									
μŢ				-15										
ря С				10										
NIAL				-	1									
IME				_										
DY				-										
N N N				_										
0.														
SISIO				-]									
a. ve				-										
'ty Lta				3-	-									
alla F				-										
Austr														
10IT /				-										
ICKEL				-14										
S Brir				-	-									
ILSON						1								
r D					This b	oreh	ole log	sho	ld be read in conjunction with Parsons Brinckerhoff's	accon	npanying	standard n	otes.	

P	D
	100 YEARS @

C

BOREHOLE ENVIRONMENTAL LOG

BOREHOLE NO.

SHEET	1	OF	1
•••		•••	

Pro	ject eho ject	le L Nu	ocation: nber:	Loop Kwina 21451	10 A ina 67D	SS	omi	nees Pty Ltd	Date Comm Date Compl Recorded B Log Checke	leted: 25/10/05 by: KS
			Mounting: iameter:	Hand A 75 mm		er		Hole Angle: 90° Surface RL Bearing: Co-ords:		N 6416048
	В	orel	nole Inform	nation				Field Material Description		
1	2	3	4	5	6	7	8	9 10	11 12	13
METHOD	SUPPORT	WATER	RL(m) DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD DESCRIPTION SOIL/ROCK MATERIAL FIELD DESCRIPTION		STRUCTURE AND ADDITIONAL OBSERVATIONS
Parsons Brinckerhoff Australia Pty Ltd. Version 5.1 ENVIRONMENTAL BOREHOLE LOG BORELOGS.GPJ GEOTECH.GDT 01/12/05			<u> </u>					TOPSOIL SAND, medium grained, pale grey, sub angular and sub rounded, with root organics, well sorted. SAND, medium grained, yellow, well sorted.		EOH
Parsons Brinckerho				This b	oreho	ole log	shou	Id be read in conjunction with Parsons Brinckerhoff's accompa	 	otes.

D
100 YEAR5 @

BOREHOLE NO.

10-69

SHEET 1 OF 1

Bore	ect eho	le L	ocation: mber:		DBNG Loop Kwina 21451	10 A ana	SS	lomi	nees Pty Ltd					Da Re	ite Comm ite Comp corded B g Checke	leted: sy:	25/10/05 25/10/05 KS JP
			Mounting		Hand 75 mn		er		Hole Angle: Bearing:	90° 	Surfa Co-o				0.4 m	N 64159	83
			hole Info						-	eld Materi						11 04100	
1	2	3	4		5	6	7	8	9			10	- 11		12		13
METHOD	SUPPORT	WATER	RL(m)	DEPTH(m)	FIELD TEST	SAMPLE	GRAPHIC LOG	USC SYMBOL	SOIL/ROCK MATERIAL FIELD D	ESCRIPTION		MOISTURE			HAND PENETROMETER R (kPa)	STRUCTUF OBS	RE AND ADDITIONA SERVATIONS
								SW	SAND, medium grained, pale grey and sub rounded grains, well sorte	r, sub angula		D					
			0.10 -			D		sw	SAND, medium grained, yellow, su sub rounded grains, well sorted.	ub angular a	nd			İİ			
			-	-				[sub rounded grains, weil solled.								
			-20	-		D		-									
						-											
			-	-		D		ł									
			-	-				ł									
						D		ł									
			-	1-										ii			
						D		-						ii			
			_	_													
			-19			D		[
			13					-									
			_			D											
						-		ł									
			_	-		D								İİ			
								-									
			-	2-													
						D											
			-	-													
						_											
			-18	-		D		1									
			F	-		D		ł									
								[
			- 2.80 -					SP	SAND, medium to coarse grained,	, pale yellow		М					
		N				D		ł	brown.	-							
		NFGW W		3-		D	<u> </u>	-	END OF BOREHOLE AT 3.00 m						├──┝	EOH	
		Ĕ															
			-	-													
			-17	-													
					·		L		uld be read in conjunction with Parso						<u> </u>		

Appendix B

 pH_{F} and pH_{FOX} Test Results

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
		•	10-1
10-1 0	6.96	5.79	weak
10-1 0.25	6.94	5.93	weak
10-1 0.5	6.97	5.50	weak
10-1 0.75	6.49	5.49	weak
10-1 1.0	6.78	6.02	weak
10-1 1.25	8.23	6.73	weak
		•	10-2
10-2 0	8.52	6.22	weak
10-2 0.25	8.74	6.31	weak
10-2 0.5	8.48	6.86	weak
		•	10-3
10-3 0	7.11	6.05	weak
10-3 0.25	6.28	5.45	weak
10-3 0.5	6.61	5.56	weak
10-3 0.75	6.56	5.75	weak
10-3 1.0	6.54	5.86	weak
10-3 1.25	6.48	5.35	weak
10-3 1.5	6.48	5.34	weak
10-3 1.75	6.28	5.61	weak
10-3 2.0	6.10	5.62	weak
10-3 2.25	6.72	5.70	weak
10-3 2.5	6.56	5.44	weak
10-3 2.75	6.15	5.36	weak
10-3 3.0	6.27	5.29	weak
		0.00	10-4
10-4 0	6.43	5.33	weak
10-4 0.25	6.04	5.29	weak
10-4 0.5	6.23	5.33	weak
10-4 0.75	6.72	5.57	weak
10-4 1.0	6.51	5.36	weak
10-4 1.25	6.17	5.36	weak
10-4 1.5	6.30	5.35	weak
10-4 1.75	6.07	5.40	weak
10-4 2.0	6.24	5.41	weak
10-4 2.25	6.86	5.54	weak
10-4 2.5	6.41	5.31	weak
10-4 2.75	6.34	5.31	weak
10-4 3.0	6.32	5.30	weak
			10-5
10-5 0	6.41	5.67	weak
10-5 0.25	6.01	5.30	weak
10-5 0.5	6.23	5.44	weak
10-5 0.75	6.60	5.67	weak
10-5 1.0	6.39	5.36	weak
10-5 1.25	6.11	5.31	weak
10-5 1.5	6.11	5.22	weak
10-5 1.75	7.26	6.15	weak
10-5 2.0	6.16	5.25	weak
10-5 2.25	6.01	5.25	weak
10-5 2.25	6.01	5.25	weak

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-5 2.5	6.06	5.24	weak
10-5 2.75	6.02	5.18	weak
10-5 3.0	8.06	6.22	weak
			10-6
10-6 0	6.31	4.45	
10-6 0.25	5.11	4.54	
10-6 0.5	5.00	4.72	
10-6 0.75	5.04	4.65	
10-6 1.0	5.31	4.99	
10-6 1.25	5.47	5.15	
10-6 1.5	5.57	4.87	
10-6 1.75	5.72	5.25	
10-6 2.0	5.79	5.17	
			10-7
10-7 0	5.19	3.87	
10-7 0.25	5.22	3.88	
10-7 0.5	5.62	4.57	
10-7 0.75	5.89	4.61	
10-7 1.0	5.80	4.86	
10-7 1.25	5.88	4.63	
10-7 1.5	5.88	4.57	5.63 4.68
10-7 1.75	5.93	4.89	
10-7 2.0	6.08	5.21	
	-		10-8
10-8 0	5.94	4.39	
10-8 0.25	5.94	4.39	
10-8 0.5	6.50	5.60	
	-		10-9
10-9 0	5.34	4.46	
10-9 0.25	7.07	5.81	
10-9 0.5	6.06	4.92	
10-9 0.75	6.33	4.09	
10-9 1.0	4.61	4.19	
10-9 1.25	4.73	3.48	
10-9 1.5	4.63	3.73	
10-9 1.75	5.54	5.05	
10.10 0		0.50	10-10
10-10 0	5.87	3.58	
10-10 0.25	F 00		
10-10 0.5	5.69	4.75	
10-10 0.75	5.84	4.72	
10-10 1.0	5.69	4.79	
10-10 1.25	6.20	5.00	
10-10 1.5	6.44	5.02	
10-10 1.75	6.56	5.45	
10-10 2.0	6.60	5.62	10.11
10.11.0			10-11
10-11 0			
10-11 0.25			
10-11 0.5			

 Project
 Loop 10 ASS
 Tested By: LA & RD
 Office
 Perth

 Client
 ECOS
 Checked By: JP
 Page No.

 Location
 Kwinana

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-11 0.75	19 1	PUTON	oon nonto
10-11 1.0			
10-11 1.25	6.97	6.18	
10-11 1.5	0101	0110	
10-11 1.75	6.99	6.25	
10-11 2.0	7.04	6.13	
	1101	0110	10-12
10-12 0	5.52	4.89	weak
10-12 0.25	6.04	5.42	weak
10-12 0.5	6.69	5.95	weak
10-12 0.75	6.73	6.07	weak
10-12 1.0	6.99	6.13	weak
10-12 1.25	7.01	5.94	weak
10-12 1.5	7.19	6.92	weak
10-12 1.75	6.55	5.71	weak
10-12 2.0	6.89	5.99	weak
10-12 2.25	7.71	6.17	weak
10-12 2.5	6.77	5.96	weak
10-12 2.75	6.80	5.98	weak
10-12 3.0	7.75	6.46	weak
			10-13
10-13 0	7.58	6.36	weak
10-13 0.25	7.32	6.09	weak
10-13 0.5	7.80	5.79	weak
10-13 0.75	8.04	6.63	weak
10-13 1.0	7.70	6.27	medium
10-13 1.25	7.64	6.14	weak
10-13 1.5	7.56	6.17	weak
10-13 1.75	7.25	6.09	weak
10-13 2.0	6.88	5.62	weak
10-13 2.25	7.54	6.16	weak
			10-14
10-14 0	4.12	1.64	medium
10-14 0.25	3.76	2.18	medium dup 3.72 2.22
10-14 0.5	3.75	2.34	weak
10-14 0.75	4.04	2.43	weak - medium
10-14 1.0	4.15	2.33	weak
10-14 1.25	5.08	2.92	very strong
10-14 1.5	5.65	2.20	medium
10-14 1.75	6.64	3.18	very strong
10-14 2.0	4.69	2.37	very strong
			10-15
10-15 0	3.90	3.12	medium
10-15 0.25	3.50	1.81	strong
10-15 0.5	3.25	1.47	strong
10-15 0.75	3.02	1.41	medium
10-15 1.0	3.44	2.06	very strong
10-15 1.25	5.89	3.80	very strong
10-15 1.5	6.20	4.44	very strong
10-15 1.75	6.52	5.42	very strong

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	pH _F	рН _{FOX}	comments
10-15 2.0	6.13	5.75	very strong
			10-16
10-16 0	3.91	2.80	medium
10-16 0.25	3.08	1.70	medium dup 3.05 1.72
10-16 0.5	2.91	1.76	weak
10-16 0.75	2.73	1.73	medium
10-16 1.0	3.18	1.96	very strong
10-16 1.25	5.10	2.64	very strong
10-16 1.5	5.39	4.48	very strong
10-16 1.75	5.67	3.04	very strong
10-16 2.0	3.45	2.56	very strong
			10-17
10-17 0	6.22	4.37	medium
10-17 0.25	4.94	4.35	medium
10-17 0.5	5.33	4.61	medium
10-17 0.75	4.88	3.90	medium
10-17 1.0	4.35	3.92	medium
10-17 1.25	6.33	5.99	medium
10-17 1.5	5.76	6.07	medium
10-17 1.75	7.17	6.65	weak - medium
10-17 2.0	7.19	6.74	weak
10 11 2.0	1,10	0.14	10-18
10-18 0	6.46	6.30	medium
10-18 0.25	7.23	6.32	medium
10-18 0.5	7.23	6.31	weak dup 7.30 6.50
10-18 0.75	7.24	6.05	medium
10-18 1.0	6.84	6.32	medium
10-18 1.25	6.66	6.28	medium
10-18 1.5	6.43	5.78	medium
10-18 1.75	6.70	5.64	medium
10-18 2.0	6.83	6.81	medium
10 10 2.0	0.00	0.01	10-19
10-19 0	8.05	5.97	medium
10-19 0.25	8.27	6.54	weak
10-19 0.5	8.62	6.77	weak
10-19 0.75	8.60	7.01	none
10-19 1.0	8.70	6.75	weak
10-19 1.25	8.80	6.94	weak
10-19 1.5	8.60	6.93	none
10-19 1.75	8.62	6.78	none
10-19 2.0	8.49	6.97	weak
10-19 2.25	8.53	7.05	weak
10-13 2.20	0.00	7,00	10-20
10-20 0	6.90	5.87	medium dup 7.05 5.60
10-20 0.25	0.90 7.28	6.30	weak
10-20 0.25	7.20 7.46	6.30 6.37	
10-20 0.5	7.40 7.44		weak
		6.59 5.07	weak
10-20 1.0	7.25	5.97	weak
10-20 1.25	7.45	6.82	medium
10-20 1.5	6.91	6.87	medium

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	pH _F	pH_{FOX}	comments
10-20 1.75	7.39	6.05	weak - medium
10-20 2.0	7.17	6.72	very strong
			10-21
10-21 0	7.69	5.69	medium - strong
10-21 0.25	9.07	7.15	weak
10-21 0.5	9.07	7.55	medium
,			10-22
10-22 0	8.04	5.85	weak
10-22 0.25	8.40	5.95	none
10-22 0.5	8.83	5.89	none
10-22 0.75	8.41	6.16	none
10-22 1.0	8.10	6.28	weak
10-22 1.25	8.11	6.04	none
10-22 1.5	7.74	5.95	none
	7.00	F 7 0	10-23
10-23 0	7.90	5.79	weak -medium
10-23 0.25	8.38	5.94	weak
10-23 0.5	8.33	5.95	none
10-23 0.75	8.61	6.01	none
10-23 1.0	7.75	6.30	weak
10-23 1.25	7.55	6.38	none
	1.00	4 5 7	10-24
10-24 0	4.89	4.57	none
10-24 0.25	4.73	4.73	none
10-24 0.5	4.82	4.88	none
10-24 0.75	4.72	4.71	none 10-25
10-25 0	5.77	4.52	medium
10-25 0.25	7.05	4.52 6.14	weak
10-25 0.25	6.44	5.59	weak
10-25 0.5	0.44 7.37	6.37	none
10-20 0.10	1,01	0.07	10-26
10-26 0	5.09	4.33	weak
10-26 0.25	4.86	4.03	none
10-26 0.5	4.98	4.31	none
10-26 0.75	4.70	4.37	none
10-26 1.0	4.21	4.27	none
10-26 1.25	4.39	4.42	none
			10-27
10-27 0	5.71	5.01	weak
10-27 0.25	5.00	4.45	weak
10-27 0.5	5.87	5.08	weak
10-27 0.75	5.79	4.94	weak
10-27 1.0	5.58	4.87	none
10-27 1.25	6.35	5.74	weak
			10-28
10-28 0	4.96	4.29	weak
10-28 0.25	5.04	4.92	weak dup 5.05 4.99
10-28 0.5	4.76	4.92	weak
10-28 0.75	4.76	5.03	none

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-28 1.0	4.70	4.95	none
			10-29
10-29 0	5.81	4.89	weak
10-29 0.25	5.19	4.34	weak
10-29 0.5	5.00	4.31	none
10-29 0.75	4.39	4.69	none
10-29 1.0	4.26	4.57	none
10-29 1.25	4.26	4.60	none
			10-30
10-30 0	4.36	3.60	medium
10-30 0.25	4.85	4.63	none
10-30 0.5	4.50	5.05	none
10-30 0.75	4.64	4.64	weak
10-30 1.0	4.90	4.54	none
			10-31
10-31 0	5.73	3.74	strong
10-31 0.25	4.79	3.79	weak - dup 4.70 3.87
10-31 0.5	4.87	3.83	medium
10-31 0.75	5.25	4.41	weak
10-31 1.0	5.37	4.41	weak
10-31 1.25	5.30	4.71	medium
10-31 1.5	5.19	4.72	weak
10-31 1.75	5.58	4.99	weak
10-31 2.0	5.69	5.06	weak
10-31 2.25	8.40	7.79	strong
40.00.0	1.00	4 4 4	10-32
10-32 0	4.98	4.14	medium
10-32 0.25	5.04	4.07	weak
10-32 0.5	5.19	4.19	weak
10-32 0.75	5.02	4.27	weak
10-32 1.0	4.56	4.79	none
10-32 1.25	4.72	4.43	none
10.22 0	5.26	0.04	10-33
10-33 0 10-33 0.25	5.26 5.30	2.84	very strong
10-33 0.25	5.30 5.35	4.07 4.30	medium medium
10-33 0.5	5.35 5.24	4.30 4.47	very strong
10-33 1.0	5.24 4.79	4.47 3.92	medium
10-00 1.0	4.13	0.92	10-34
10-34 0	4.89	4.10	medium - dup 4.94 4.19
10-34 0.25	5.11	4.63	none
10-34 0.5	4.64	4.45	none
10-34 0.75	4.59	4.39	weak
10-34 1.0	4.58	4.49	weak
10-34 1.25	4.49	4.75	weak
10-34 1.5	4.45	4.63	none
	1.70	1.00	10-35
10-35 0	4.66	4.05	weak
10-35 0.25	5.02	5.14	none
10-35 0.5	5.26	4.57	none
2 2 2 0 10	5.20		

 Project
 Loop 10 ASS
 Tested By: LA & RD
 Office
 Perth

 Client
 ECOS
 Checked By: JP
 Page No.

 Location
 Kwinana

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-35 0.75	5.48	5.48	none
10-35 1.0	5.65	5.45	none
10-35 1.25	5.45	5.54	weak
10-35 1.5	5.22	5.30	none
10-35 1.75	4.90	5.30	none
10-35 2.0	4.30	3.85	none
10-35 2.25	4.14	3.74	none
10-00 2,20	7.17	0.74	10-36
10-36 0	6.72	5.15	medium
10-36 0.25	8.07	5.73	weak
10-36 0.5	8.38	5.86	weak
10-36 0.75	8.06	5.67	weak
10-36 1.0	6.12	4.92	weak
10-36 1.25	4.16	2.83	very strong
10-36 1.5	4.56	2.81	very strong
		2.01	10-37
10-37 0	5.07	4.43	
10-37 0.25	4.19	4.50	
10-37 0.5	4.25	4.21	
10-37 0.75	4.29	4.58	
10-37 1.0	4.76	4.82	
10-37 1.25	4.12	4.04	
10-37 1.5	4.02	3.97	
10-37 1.75	4.01	3.73	
10-37 2.0	4.12	4.22	
			10-38
10-38 0	4.62	4.11	
10-38 0.25	4.80	4.04	
10-38 0.5	4.68	4.24	
10-38 0.75	4.68	3.88	
10-38 1.0	4.75	4.58	
10-38 1.25	5.00	4.20	
10-38 1.5	4.58	5.01	
10-38 1.75	4.94	4.74	
10-38 2.0	4.86	4.39	
10-38 2.25	4.93	4.96	
10-38 2.5	4.88	4.04	
10-38 2.75	4.97	4.42	
10-38 3.0	4.80	4.51	
40.00			10-39
10-39 0	4.82	4.25	
10-39 0.25	5.14	5.09	
10-39 0.5	5.03	5.11	
10-39 0.75	5.23	5.22	
10-39 1.0	4.79	4.77	
10-39 1.25	5.27	5.22	
10-39 1.5	5.20	4.90	
10-39 1.75	5.40	5.38	
10-39 2.0	5.67	4.51	
10-39 2.25	4.94	4.48	

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-39 2.5	4.96	4.10	
10-39 2.75	4.69	5.28	
10-39 3.0	4.66	5.70	
			10-40
10-40 0	4.89	4.31	
10-40 0.25	4.31	4.11	
10-40 0.5	4.81	4.00	
10-40 0.75	4.59	5.04	
10-40 1.0	4.90	4.24	
10-40 1.25	4.74	5.18	
10-40 1.5	4.88	4.71	
10-40 1.75	4.74	5.38	
10-40 2.0	4.63	4.95	
10-40 2.25	4.67	4.58	
10-40 2.5	4.94	3.90	
10-40 2.75	3.90	3.98	
			10-41
10-41 0	4.44	4.66	
10-41 0.25	4.76	4.58	
10-41 0.5	4.99	4.42	
10-41 0.75	4.60	4.19	
10-41 1.0	5.19	5.22	
10-41 1.25	5.27	5.64	
10-41 1.5	5.16	4.54	
10-41 1.75	5.25	5.54	
10-41 2.0	5.10	4.57	
10-41 2.25	4.40	4.72	
10-41 2.5	4.52	4.49	
			10-42
10-42 0	5.15	5.10	
10-42 0.25	4.83	5.07	
10-42 0.5	4.69	5.90	
10-42 0.75	4.29	5.56	
10-42 1.0	4.41	5.17	
10-42 1.25	4.35	4.69	10.40
10.40	1 70	4.00	10-43
10-43 0	4.79	4.39	
10-43 0.25	4.84	4.85	
10-43 0.5	4.27	5.74	
10-43 0.75	4.26	4.44	
10-43 1.0	4.14	4.35	10.44
10-44 0	4.96	3.77	10-44
10-44 0		3.77 4.34	
10-44 0.25 10-44 0.5	4.56	4.34 4.36	
10-44 0.5 10-44 0.75	4.32		
	4.21	4.90	
10-44 1.0	4.14	4.94	10.45
10-45 0	4.54	3.66	10-45
10-45 0	4.54 4.45	3.66 3.73	
10-40 0.20	4,40	0.10	

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth	
			Job No. 2145167D	
Client	ECOS	Checked By: JP	Page No.	
Location	Kwinana			

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-45 0.5	4.43	3.65	
10-45 0.75	3.81	3.93	
10-45 1.0	3.76	3.61	
10-45 1.25	3.82	3.76	
			10-46
10-46 0	4.62	4.05	
10-46 0.25	4.15	3.72	
10-46 0.5	4.04	3.95	
10-46 0.75	4.14	4.21	
			10-47
10-47 0	5.21	4.91	
10-47 0.25	4.00	3.74	
10-47 0.5	4.24	4.82	
10-47 0.75	4.20	4.97	
			10-48
10-48 0	5.04	4.65	
10-48 0.25	4.34	4.06	
10-48 0.5	4.22	4.04	
10-48 0.75	4.19	4.19	
			10-49
10-49 0	6.35	4.67	
10-49 0.25	4.23	4.18	4.46, 5.02
10-49 0.5	4.45	5.14	
10-49 0.75	4.36	4.87	
			10-50
10-50 0	5.15	4.42	
10-50 0.25	4.22	4.17	
10-50 0.5	4.45	4.73	
10-50 0.75	3.97	4.32	3.94, 4.31
	0.50	=	10-51
10-51 0	6.50	5.02	medium
10-51 0.25	5.62	4.22	medium
10-51 0.5	3.80	3.83	medium
10-51 0.75	4.18	3.97	medium
10-51 1.0	5.95	5.51	medium
10-51 1.25	6.83	6.13	medium
10-51 1.5	7.70	7.15	medium
10-51 1.75	7.25	6.48	medium dup 7.42, 6.46
10.52 0	E 00	0.00	10-52
10-52 0	5.38	3.62	strong
10-52 0.25	7.62	8.43	medium
10-52 0.5 10-52 0.75	7.76	7.78	strong
	8.64	8.57	very strong
10-52 1.0	8.54	8.40	very strong
10-52 1.25	8.34	7.58	very strong
10-52 1.5	8.00	7.21	very strong
10-52 1.75	7.82	6.83	very strong
10-52 2.0	7.62	6.76	very strong
10-52 2.25	7.61	6.70	very strong
10-52 2.5	7.35	6.39	very strong

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-52 2.75	7.79	7.87	medium
	1.10	1.01	10-53
10-53 0	5.56	4.75	
10-53 0.25	4.86	4.24	
10-53 0.5	4.48	4.34	
10-53 0.75	4.42	4.38	
10-53 1.0	4.63	4.70	
10 00 1.0	1.00	1.70	10-54
10-54 0	5.05	4.07	
10-54 0.25	4.73	4.88	
10-54 0.5	4.28	5.12	
10-54 0.75	4.33	4.98	
10-54 1.0	4.55	5.20	4.65, 5.12
10-54 1.25	4.54	4.85	
	1.0 T	1.00	10-55
10-55 0	4.28	4.17	
10-55 0.25	4.69	4.53	
10-55 0.5	4.46	5.30	
10-55 0.75	4.61	5.14	4.66, 5.17
10-55 1.0	4.79	5.22	1.00, 0.11
10-55 1.25	4.99	4.93	
10-55 1.5	5.48	5.15	
10-55 1.75	5.36	5.11	
10 00 1.10	0.00	0.11	10-56
10-56 0	4.99	4.26	
10-56 0.25	5.70	4.97	
10-56 0.5	5.76	5.39	
10-56 0.75	5.73	5.54	
10-56 1.0	5.80	5.63	
10-56 1.25	5.82	5.23	
10-56 1.5	5.89	5.60	
10-56 1.75	5.84	5.54	
10-56 2.0	6.04	5.19	
10-56 2.25	5.99	5.31	
10-56 2.5	5.97	5.25	
10-56 2.75	5.99	5.91	
10-56 3.0	5.92	5.48	
			10-57
10-57 0	4.75	4.43	
10-57 0.25	4.98	4.97	
10-57 0.5	5.20	5.47	
10-57 0.75	5.25	4.94	
10-57 1.0	5.24	5.58	
10-57 1.25	5.23	5.33	
10-57 1.5	5.21	4.84	
10-57 1.75	5.36	5.48	
10-57 2.0	5.37	5.11	
10-57 2.25	5.15	5.12	
10-57 2.5	4.98	4.82	

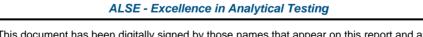
Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

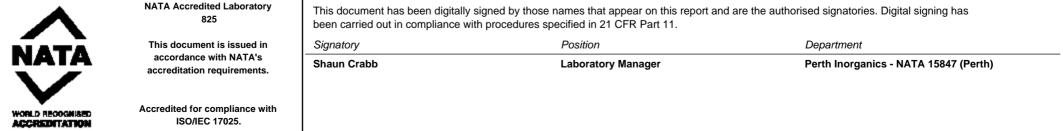
Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
		1 100	10-58
10-58 0	5.01	4.50	
10-58 0.25	4.94	4.65	
10-58 0.5	4.88	5.61	
10-58 0.75	5.44	4.79	
10-58 1.0	5.00	4.67	
10-58 1.25	4.59	4.51	4.54, 4.51
10-00 1,20	4.00	4.01	10-59
10-59 0	4.69	4.09	10-00
10-59 0.25	4.57	4.14	
10-59 0.23	4.16	4.14	
10-59 0.75	4.35	4.33	10.60
10-60 0	014	E 07	10-60
	8.14	5.87	
10-60 0.25	7.98	6.18	
10-60 0.5	7.74	6.51	
10-60 0.75	7.63	6.91	
10-60 1.0	7.41	6.45	
10-60 1.25	7.43	6.80	
			10-61
10-61 0	4.65	4.00	
10-61 0.25	4.15	3.72	
10-61 0.5	4.26	3.80	
10-61 0.75	4.20	4.11	
			10-62
10-62 0	5.13	4.21	
10-62 0.25	5.02	4.99	
10-62 0.5	5.01	5.23	5.02, 5.18
10-62 0.75	5.35	4.86	
			10-63
10-63 0	4.99	4.36	
10-63 0.25	4.74	4.33	
10-63 0.5	5.13	4.45	
10-63 0.75	4.88	4.90	
10-63 1.0	4.70	5.01	
10-63 1.25	4.70	5.18	
10-63 1.5	4.68	5.04	
10-63 1.75	4.61	5.08	
			10-64
10-64 0	4.68	4.32	4.72,?
10-64 0.25	4.84	4.17	
10-64 0.5	4.10	3.83	
10-64 0.75	4.35	4.22	
10-64 1.0	4.84	4.71	
10-64 1.25	4.56	4.71	
10-64 1.5	4.50	4.71	
10-04 1.0	4.07	4.07	10-65
10-65 0	4.61	4.01	
	4.01	4.01	
10.65 0.26			
10-65 0.25 10-65 0.5	4.73	4.51	

Project	Loop 10 ASS	Tested By: LA & RD	Office Perth
			Job No. 2145167D
Client	ECOS	Checked By: JP	Page No.
Location	Kwinana		

Sample Name/			
Depth (m)	рН _F	рН _{FOX}	comments
10-65 0.75	4.62	4.48	
10-65 1.0	4.60	4.59	
10-65 1.25	4.50	5.60	
		2,00	10-66
10-66 0	4.60	3.64	-
10-66 0.25	4.35	3.96	
10-66 0.5	4.46	4.10	
10-66 0.75	4.64	4.49	
10-66 1.0	4.49	4.48	
10-66 1.25	4.12	4.42	
10-66 1.5	4.23	4.47	4.24, 4.47
			10-67
10-67 0	4.41	3.78	4.31, 3.69
10-67 0.25	4.83	3.45	
10-67 0.5	3.80	3.62	
10-67 0.75	3.90	3.90	
			10-68
10-68 0	5.15	4.71	
10-68 0.25	5.84	5.29	
10-68 0.5	6.00	5.51	
10-68 0.75	5.97	5.64	
10-68 1.0	5.94	5.66	
10-68 1.25	6.05	5.77	
10-68 1.5	6.04	5.72	6.25, 5.83
10-68 1.75	6.16	5.85	
10-68 2.0	6.09	5.56	
10-68 2.25	5.93	5.75	5.86, 5.71
10-68 2.5	6.14	5.72	
10-68 2.75	5.93	5.67	
10-68 3.0	5.95	5.04	10.00
10.60.0	E 00	1.60	10-69
10-69 0 10-69 0.25	5.80 6.12	4.69 5.16	
	6.12 6.25		
10-69 0.5		5.19 6.00	
10-69 0.75 10-69 1.0	6.48 6.35	6.00 5.69	
10-69 1.25	6.35 6.28	5.69 5.56	
10-69 1.5	6.18	5.86	
10-69 1.75	5.96	5.39	
10-69 2.0	5.90 6.06	5.34	
10-69 2.25	6.26	5.51	
10-69 2.5	6.28	5.39	
10-69 2.5	6.20 6.48	5.39 5.42	
10-69 3.0	6.10	5.42	
10-03-0.0	0.10	0.40	

Appendix C


Laboratory Analysis Results



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	∴ 1 of 7
Contact	S MS JULIE PALICH	Contact	🗄 Shaun Crabb	Work Order	⁻ EP0501723
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∶ jpalich@pb.com.au	E-mail	∴ Shaun.Crabb@alsenviro.com		
Telephone	÷ 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	£ 61-8-9209-7600		
Project	2145167D Rebatch EP0501671	Quote number	EN/008/05	Date received	2 8 Dec 2005
Order number	🗄 - Not provided -			Date issued	∑ 13 Dec 2005
C-O-C number	- Not provided -			No. of samples	- Received : 18
Site	∵ Kwinana				Analysed : 18

Comments

This report for the ALSE reference EP0501723 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Specific comments for Work Order EP0501723

Retained Acidity not required because pH KCI greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

Page Number: 3 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501723

Analytical Results		Client Sample ID :	10-1	10-2	10-3	10-3	10-3
			0.75	0	0	0.5	1.0
		Type / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
	Si	ample Date / Time :	28 Nov 2005	28 Nov 2005	28 Nov 2005	28 Nov 2005	28 Nov 2005
			15:00	15:00	15:00	15:00	15:00
	Lab	oratory Sample ID :					
Analyte	CAS number LOI	R Units	EP0501723-001	EP0501723-002	EP0501723-003	EP0501723-004	EP0501723-005
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	6.4	9.0	6.8	6.4	6.2
Titratable Actual Acidity (23F)	2	mole H+/t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	2 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		·					
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity		·					
Acid Neutralising Capacity (19A1)	0.01	% CaCO3		4.41	0.17		
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t		882	35		
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S		1.41	0.06		
EA033-E: Acid Base Accounting		•					
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1
		5				1	1

Page Number : 4 of 7 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501723

Analytical Results		Client Sample ID :	10-3 1.5	10-3 2.0	10-3 2.5	10-3 3.0	10-4 1.0
		Type / Description : ample Date / Time :	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00
	Lab	oratory Sample ID :					
Analyte	CAS number LO	R Units	EP0501723-006	EP0501723-007	EP0501723-008	EP0501723-009	EP0501723-010
EA033-A: Actual Acidity				*	8	•	
pH KCI (23A)	0.1	pH Unit	6.4	6.2	6.3	6.2	6.2
Titratable Actual Acidity (23F)	2	mole H+/t	<2	2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		1				1	
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number : 5 of 7 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501723

Analytical Results		Client Sample ID :	10-5 1.25	10-12 0	10-12 0.5	10-12 1.0	10-12 1.5
	Sa	ype / Description : mple Date / Time :	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00
	Labo	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501723-011	EP0501723-012	EP0501723-013	EP0501723-014	EP0501723-015
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	6.2	5.0	5.4	5.8	6.0
Titratable Actual Acidity (23F)	2	mole H+/t	<2	46	20	8	6
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	0.07	0.03	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	0.02	0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	16	13	<10	<10
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	0.10	0.05	0.02	0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	62	33	15	14
Liming Rate	1	kg CaCO3/t	<1	5	2	1	1

Page Number : 6 of 7 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501723

Analytical Results		Client Sample ID :	10-12 2.0	10-12 2.5	10-13 0.5		
		Type / Description : Sample Date / Time :	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00		
	La	boratory Sample ID :					
Analyte	CAS number LC	DR Units	EP0501723-016	EP0501723-017	EP0501723-018		
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	l pH Unit	5.9	6.3	6.5		
Titratable Actual Acidity (23F)	2	mole H+ / t	14	3	<2		
sulfidic - Titratable Actual Acidity (s-23F)	0.0	2 % pyrite S	0.02	<0.02	<0.02		
EA033-B: Potential Acidity				_	-		
Chromium Reducible Sulfur (22B)	0.0	2 % S	<0.02	<0.02	<0.02		
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10		
EA033-E: Acid Base Accounting					•	· · ·	
ANC Fineness Factor	0.5	5	1.5	1.5	1.5		
Net Acidity (sulfur units)	0.0	2 % S	0.04	<0.02	<0.02		
Net Acidity (acidity units)	10	mole H+ / t	24	<10	<10		
Liming Rate	1	kg CaCO3/t	2	<1	<1		

Page Number: 7 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501723

Surrogate Control Limits

1 No surrogates present on this report.

ALS Environmental

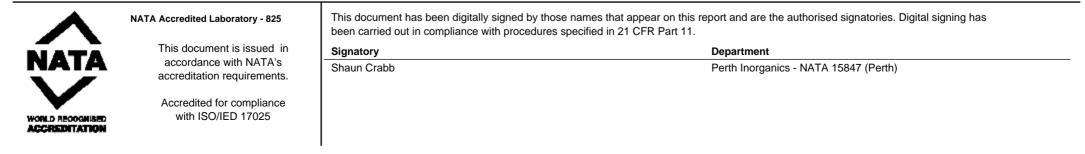
QUALITY CONTROL REPORT

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	: 1 of 4
Contact Address	: MS JULIE PALICH : P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Contact Address	: Shaun Crabb : 10 Hod Way Malaga WA Australia 6090	Work order	: EP0501723
				Amendment No.	:
Project	: 2145167D Rebatch EP0501671	Quote number	: EN/008/05	Date received	: 8 Dec 2005
Order number C-O-C number Site	: - Not provided - : - Not provided - : Kwinana			Date issued	: 13 Dec 2005
E-mail Telephone Facsimile	 jpalich@pb.com.au 08 9489 9700 08 9380 4060 	E-mail Telephone Facsimile	 Shaun.Crabb@alsenviro.com 61-8-9209-7655 61-8-9209-7600 	No. of samples Received Analysed	: 18 : 18

This final report for the ALSE work order reference EP0501723 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:


- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

Retained Acidity not required because pH KCl greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

ALSE - Excellence in Analytical Testing

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501723	Page Number	: 2 of 4	(ALS)
Project	:	2145167D Rebatch EP0501671	ALS Quote Reference	:	EN/008/05	Issue Date	: 13 Dec 2005	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-A: Actual Acidity					•	•
EA033-A: Actual Acidity	- (QC Lot: 148600)			pH Unit	pH Unit	%
EP0501723-001	10-1 - 0.75	pH KCI (23A)	0.1 pH Unit	6.4	6.4	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EP0501723-011	10-5 - 1.25	pH KCI (23A)	0.1 pH Unit	6.2	6.2	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-B: Potential Acidit	у		·	ł		
EA033-B: Potential Acid	ity - (QC Lot: 148600)			% S	% S	%
EP0501723-001	10-1 - 0.75	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501723-011	10-5 - 1.25	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EA033-E: Acid Base Acco	ounting			•	•	•
EA033-E: Acid Base Acc	ounting - (QC Lot: 148600)					%
EP0501723-001	10-1 - 0.75	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0
EP0501723-011	10-5 - 1.25	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0

Laboratory Duplicates (DUP) Report

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501723	Page Number	:	3 of 4	(ALS)
Project	:	2145167D Rebatch EP0501671	ALS Quote Reference	:	EN/008/05	Issue Date	:	13 Dec 2005	ALS Environmen

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

					. , .	
		Method blank		Results		ery Limits
Analyte name	LOR	. result	Spike concentration	Spike Recovery LCS	Low	ecovery Limits High
EA033-A: Actual Acidity	Lon				2011	ingn
EA033-A: Actual Acidity - (QC Lot: 148600)		pH Unit	pH Unit	%	%	%
pH KCI (23A)	0.1 pH Unit	<0.1				
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02				
Titratable Actual Acidity (23F)	2 mole H+ / t	<2				
EA033-B: Potential Acidity						
EA033-B: Potential Acidity - (QC Lot: 148600)		mole H+ / t	mole H+ / t	%	%	%
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10				
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02				
EA033-C: Acid Neutralising Capacity		-		-	-	-
EA033-C: Acid Neutralising Capacity - (QC Lot: 148600)		% pyrite S	% pyrite S	%	%	%
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01				
EA033-E: Acid Base Accounting						
EA033-E: Acid Base Accounting - (QC Lot: 148600)				%	%	%
ANC Fineness Factor		<0.5				
Liming Rate	1 kg CaCO3/t	<1				
Net Acidity (acidity units)	10 mole H+ / t	<10				
Net Acidity (sulfur units)	0.02 % S	<0.02				

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501723	Page Number	:	4 of 4	(ALS)
Project	:	2145167D Rebatch EP0501671	ALS Quote Reference	:	EN/008/05	Issue Date	:	13 Dec 2005	ALS Environmental

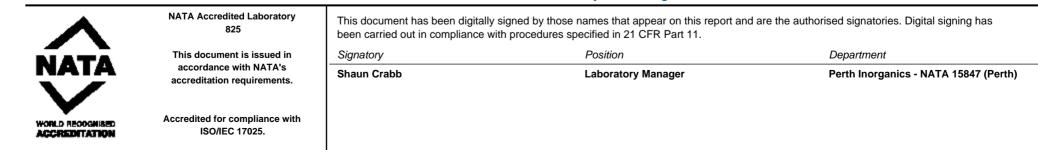
Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report

		Actual	Results	Recovery Limits				
			1		Sample Result	Spike Recovery	Static	Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
- (QC Lot:)						%	%	%

1 No Matrix Spike (MS) carried out on this Work Order.



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	✓ PARSONS BRINCKERHOFF AUST P/L	Laboratory	2 ALS Environmental Perth	Page	∴ 1 of 6
Contact	: MS JULIE PALICH	Contact	∑ Shaun Crabb	Work Order	[:] EP0501474
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com		
Telephone	÷ 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	É 61-8-9209-7600		
Project	2145167D	Quote number	É EN/008/05	Date received	ੰ 17 Nov 2005
Order number	: - Not provided -			Date issued	∴ 1 Dec 2005
C-O-C number	21843			No. of samples	- Received : 47
Site	ິ Kwinana				Analysed : 14

ALSE - Excellence in Analytical Testing

Comments

This report for the ALSE reference EP0501474 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Specific comments for Work Order EP0501474

ANC not required because pH KCl less than 6.5

Retained Acidity not required because pH KCl greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

Page Number : 3 of 6 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501474

Analytical Results		Client Sample ID :	10_11 1.25	10_10 Surface	10_10 0.5	10_10 1	10_10 1.5
	•	Type / Description : mple Date / Time :	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00
	Labo	oratory Sample ID :					
Analyte	CAS number LOF	Units	EP0501474-006	EP0501474-010	EP0501474-012	EP0501474-014	EP0501474-016
EA033-A: Actual Acidity				•			
pH KCI (23A)	0.1	pH Unit	5.8	5.2	5.2	5.2	5.3
Titratable Actual Acidity (23F)	2	mole H+/t	16	29	20	26	21
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	0.02	0.05	0.03	0.04	0.03
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	0.03	0.05	0.04	0.04	0.03
Net Acidity (acidity units)	10	mole H+/t	18	33	23	26	20
Liming Rate	1	kg CaCO3/t	1	2	2	2	2

Page Number : 4 of 6 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501474

Analytical Results		Client Sample ID :	10_10 2	10_9 1.25	10_8 0.25	10_7 0.25	10_6 Surface
	•	Type / Description : Imple Date / Time :	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00
	Labo	oratory Sample ID :					
Analyte	CAS number LOF	Units	EP0501474-018	EP0501474-024	EP0501474-028	EP0501474-031	EP0501474-039
EA033-A: Actual Acidity		· · · · · ·					
pH KCI (23A)	0.1	pH Unit	5.3	5.4	5.7	5.6	5.8
Titratable Actual Acidity (23F)	2	mole H+ / t	17	12	5	6	4
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	0.03	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		i		-			-
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting		·		·			•
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	0.03	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	16	11	<10	<10	<10
Liming Rate	1	kg CaCO3/t	1	<1	<1	<1	<1

Page Number : 5 of 6 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501474

	Client Sample ID :		10_6	10_6	10_6	10_6	
Analytical Results					1	1.5	2
	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :		0.5 SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	SOIL 8 Nov 2005 15:00	
Analyte	CAS number		Units	EP0501474-041	EP0501474-043	EP0501474-045	EP0501474-047
EA033-A: Actual Acidity	one number	LON	enna	-	1		-
pH KCI (23A)		0.1	pH Unit	5.5	5.6	5.7	5.9
Titratable Actual Acidity (23F)		2	mole H+ / t	2	4	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity			I		·	I	l
Chromium Reducible Sulfur (22B)		0.02	% S	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10	<10	<10	<10
EA033-E: Acid Base Accounting							
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)		10	mole H+ / t	<10	<10	<10	<10
Liming Rate		1	kg CaCO3/t	<1	<1	<1	<1

 Page Number
 : 6 of 6

 Client
 : PARSONS BRINCKERHOFF AUST P/L

 Work Order
 : EP0501474

Surrogate Control Limits

1 No surrogates present on this report.

ALS Environmental

QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 4
Contact	:	MS JULIE PALICH	Contact	: Shaun Crabb			
Address	:	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	: 10 Hod Way Malaga WA Australia 6090	Work order	:	EP0501474
					Amendment No.	:	
Project	:	2145167D	Quote number	: EN/008/05	Date received	:	17 Nov 2005
Order number	:	- Not provided -			Date issued	:	1 Dec 2005
C-O-C number	:	21843					
Site	:	Kwinana					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	47
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	14

This final report for the ALSE work order reference EP0501474 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

ANC not required because pH KCI less than 6.5

Retained Acidity not required because pH KCl greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

ALSE - Excellence in Analytical Testing

	NATA Accredited Laboratory - 825	This document has been digitally signed by the been carried out in compliance with procedure	ose names that appear on this report and are the authorised signatories. Digital signing has s specified in 21 CFR Part 11.
NATÀ	This document is issued in accordance with NATA's	Signatory	Department
	accreditation requirements.	Shaun Crabb	Perth Inorganics - NATA 15847 (Perth)
WORLD RECOGNISED	Accredited for compliance with ISO/IED 17025		

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501474	Page Number	:	2 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	1 Dec 2005	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-A: Actual Acidity						-
EA033-A: Actual Acidity	- (QC Lot: 139404)			pH Unit	pH Unit	%
EP0501474-006	10_11 - 1.25	pH KCI (23A)	0.1 pH Unit	5.8	5.9	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	16	16	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	0.02	0.02	0.0
EP0501474-041	10_6 - 0.5	pH KCI (23A)	0.1 pH Unit	5.5	5.7	3.2
		Titratable Actual Acidity (23F)	2 mole H+ / t	2	2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-B: Potential Acidit	у		·	•		
EA033-B: Potential Acid	ity - (QC Lot: 139404)			% S	% S	%
EP0501474-006	10_11 - 1.25	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501474-041	10_6 - 0.5	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EA033-E: Acid Base Acco	ounting		·	•	•	•
EA033-E: Acid Base Aco	ounting - (QC Lot: 139404)					%
EP0501474-006	10_11 - 1.25	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	0.03	0.03	0.0
		Net Acidity (acidity units)	10 mole H+ / t	18	18	0.0
		Liming Rate	1 kg CaCO3/t	1	1	0.0
EP0501474-041	10_6 - 0.5	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0

Laboratory Duplicates (DUP) Report

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501474	Page Number	:	3 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	1 Dec 2005	ALS Environmental

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

			- i			
		Method blank	Actual	Results	Recove	ery Limits
			Spike concentration	Spike Recovery	Dynamic Recovery Limits	
Analyte name	LOR			LCS	Low	High
EA033-A: Actual Acidity		-				
EA033-A: Actual Acidity - (QC Lot: 139404)		pH Unit	pH Unit	%	%	%
pH KCI (23A)	0.1 pH Unit	<0.1				
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02				
Titratable Actual Acidity (23F)	2 mole H+ / t	<2				
EA033-B: Potential Acidity		-				•
EA033-B: Potential Acidity - (QC Lot: 139404)		mole H+ / t	mole H+ / t	%	%	%
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10				
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02				
EA033-E: Acid Base Accounting						
EA033-E: Acid Base Accounting - (QC Lot: 139404)				%	%	%
ANC Fineness Factor		<0.5				
Liming Rate	1 kg CaCO3/t	<1				
Net Acidity (acidity units)	10 mole H+ / t	<10				
Net Acidity (sulfur units)	0.02 % S	<0.02				

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501474	Page Number	:	4 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	1 Dec 2005	ALS Environmental

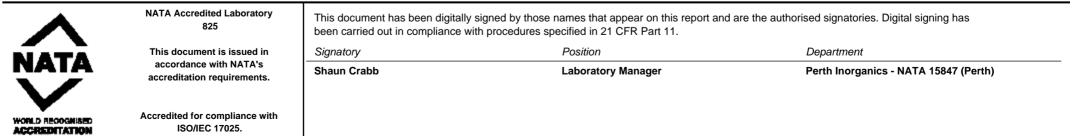
Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report

						Results		ery Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration	Sample Result	Spike Recovery MS	Low	: Limits High
				1				r
- (QC Lot:)						%	%	%

1 No Matrix Spike (MS) carried out on this Work Order.



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	2 ALS Environmental Perth	Page	ິ 1 of 7
Contact	: MS JULIE PALICH	Contact	: Shaun Crabb	Work Order	[:] EP0501418
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	∵ Shaun.Crabb@alsenviro.com		
Telephone	² 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	² 08 9380 4060	Facsimile	£ 61-8-9209-7600		
Project	2145167D	Quote number	EN/008/05	Date received	∑ 4 Nov 2005
Order number	∴ - Not provided -			Date issued	2 Dec 2005
C-O-C number	24455			No. of samples	- Received : 74
Site	: Kwinana				Analysed : 17

Comments

This report for the ALSE reference EP0501418 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Specific comments for Work Order EP0501418

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

Page Number: 3 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501418

Analytical Results		Client Sample ID :	10-14 0.5	10-15 1.0	10-16 0	10-16 0.5	10-16 1.0
-		ype / Description : mple Date / Time :	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00
	Labo	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501418-003	EP0501418-014	EP0501418-019	EP0501418-021	EP0501418-023
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	8.3	4.4	5.2	3.9	4.2
Titratable Actual Acidity (23F)	2	mole H+/t	<2	108	57	282	201
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	0.17	0.09	0.45	0.32
EA033-B: Potential Acidity		•					
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	0.07	<0.02	0.02	0.10
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	46	<10	13	61
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	2.35				
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	470				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	0.75				
EA033-D: Retained Acidity							
Net Acid Soluble Sulfur (20Je)	0.02	% S		<0.02		<0.02	<0.02
acidity - Net Acid Soluble Sulfur (a-20J)	10	mole H+/t		<10		<10	<10
sulfidic - Net Acid Soluble Sulfur (s-20J)	0.02	% pyrite S		<0.02		<0.02	<0.02
KCI Extractable Sulfur (23Ce)	0.02	% S		0.18		0.11	0.22
HCI Extractable Sulfur (20Be)	0.02	% S		0.17		0.13	0.21
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	0.24	0.10	0.49	0.41
Net Acidity (acidity units)	10	mole H+/t	<10	148	60	304	256
Liming Rate	1	kg CaCO3/t	<1	11	4	23	19

Page Number: 4 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501418

Analytical Results		Client Sample ID :	10-16 1.5	10-16 2.0	10-17 0.5	10-18 1.75	10-19 0
	Sample Matrix	Type / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
	•	ample Date / Time :	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005
			15:00	15:00	15:00	15:00	15:00
	Lat	oratory Sample ID :					
Analyte	CAS number LO	R Units	EP0501418-025	EP0501418-027	EP0501418-030	EP0501418-044	EP0501418-046
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	4.8	5.2	5.2	7.0	8.6
Titratable Actual Acidity (23F)	2	mole H+ / t	51	26	29	<2	<2
sulfidic - Titratable Actual Acidity	0.02	2 % pyrite S	0.08	0.04	0.05	<0.02	<0.02
(s-23F)							
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	2 % S	0.14	0.12	<0.02	0.03	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	89	74	<10	21	<10
EA033-C: Acid Neutralising Capacity	,						
Acid Neutralising Capacity (19A1)	0.0	1 % CaCO3				1.23	9.85
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t				246	1970
sulfidic - Acid Neutralising Capacity (s-19A1)	0.0	1 % pyrite S				0.39	3.16
EA033-E: Acid Base Accounting			1				
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	2 % S	0.22	0.16	0.06	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	140	99	36	<10	<10
Liming Rate	1	kg CaCO3/t	10	7	3	<1	<1
		~					

Page Number : 5 of 7 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501418

	С	lient Sample ID :	10-19	10-19	10-19	10-19	10-20
Analytical Results			0.5	1.0	1.5	2.0	1.0
	Sample Matrix T	ype / Description :	on : SOIL	SOIL	SOIL	SOIL	SOIL
	Sar	nple Date / Time :	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005
	1.1		15:00	15:00	15:00	15:00	15:00
		atory Sample ID :			ED0504449.050		ED0504449.000
Analyte	CAS number LOR	Units	EP0501418-048	EP0501418-050	EP0501418-052	EP0501418-054	EP0501418-060
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	8.9	9.0	8.7	8.5	8.9
Titratable Actual Acidity (23F)	2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity		·					
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	78.8	77.2	74.8	59.4	45.6
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	15700	15400	14900	11900	9110
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	25.2	24.7	24.0	19.0	14.6
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 6 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501418

Analytical Results		Clien	t Sample ID :	10-21 0	10-22 0.5	
	Sample Ma		/ Description : Date / Time :	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	
		aborator	ry Sample ID :			
Analyte	CAS number	LOR	Units	EP0501418-065	EP0501418-070	
EA033-A: Actual Acidity						
pH KCI (23A)	().1	pH Unit	8.5	9.2	
Titratable Actual Acidity (23F)		2 r	mole H+ / t	<2	<2	ĺ
sulfidic - Titratable Actual Acidity (s-23F)	0	.02 9	% pyrite S	<0.02	<0.02	
EA033-B: Potential Acidity			•			
Chromium Reducible Sulfur (22B)	0	.02	% S	<0.02	0.11	
acidity - Chromium Reducible Sulfur (a-22B)		10 r	mole H+ / t	<10	71	
EA033-C: Acid Neutralising Capacity			•		·	
Acid Neutralising Capacity (19A1)		.01 (% CaCO3	3.32	0.92	
acidity - Acid Neutralising Capacity (a-19A1)		10 r	mole H+ / t	664	185	
sulfidic - Acid Neutralising Capacity (s-19A1)	0	.01 9	% pyrite S	1.06	0.30	
EA033-E: Acid Base Accounting			•			
ANC Fineness Factor	().5		1.5	1.5	
Net Acidity (sulfur units)	0	.02	% S	<0.02	<0.02	
Net Acidity (acidity units)		10 r	mole H+ / t	<10	<10	
Liming Rate		1 k	g CaCO3/t	<1	<1	

Page Number: 7 of 7Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501418

Surrogate Control Limits

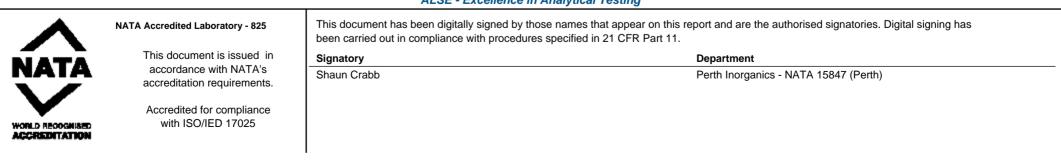
1 No surrogates present on this report.

ALS Environmental

QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 5
Contact	:	MS JULIE PALICH	Contact	: Shaun Crabb			
Address	:	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	: 10 Hod Way Malaga WA Australia 6090	Work order	:	EP0501418
					Amendment No.	:	
Project	:	2145167D	Quote number	: EN/008/05	Date received	:	4 Nov 2005
Order number	:	- Not provided -			Date issued	:	2 Dec 2005
C-O-C number	:	24455					
Site	:	Kwinana					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	74
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	17

This final report for the ALSE work order reference EP0501418 supersedes any previous reports with this reference.


Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

ALSE - Excellence in Analytical Testing

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501418	Page Number	: 20	of 5	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	: 2	2 Dec 2005	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

					Euborator	y Duphoutoo (Doi) hopo
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-A: Actual Acidity						
EA033-A: Actual Acidity	y - (QC Lot: 142526)			pH Unit	pH Unit	%
EP0501418-003	10-14 - 0.5	pH KCI (23A)	0.1 pH Unit	8.3	8.3	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EP0501418-048	10-19 - 0.5	pH KCI (23A)	0.1 pH Unit	8.9	9.0	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-B: Potential Acidi	ity			•	•	•
EA033-B: Potential Acid	dity - (QC Lot: 142526)			% S	% S	%
EP0501418-003	10-14 - 0.5	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501418-048	10-19 - 0.5	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EA033-C: Acid Neutralisi	ing Capacity			•	•	•
EA033-C: Acid Neutralis	sing Capacity - (QC Lot: 142526)			% CaCO3	% CaCO3	%
EP0501418-003	10-14 - 0.5	Acid Neutralising Capacity (19A1)	0.01 % CaCO3	2.35	2.38	1.3
		Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	470	476	1.3
		sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	0.75	0.76	0.0
EP0501418-048	10-19 - 0.5	Acid Neutralising Capacity (19A1)	0.01 % CaCO3	78.8	78.8	0.0
		Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	15700	15700	0.01
		sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	25.2	25.2	0.0
EA033-E: Acid Base Acc	ounting					
EA033-E: Acid Base Ac	counting - (QC Lot: 142526)					%
EP0501418-003	10-14 - 0.5	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0

Laboratory Duplicates (DUP) Report

ALS
LS Environmental

Client : PARS Project : 21451	SONS BRINCKERHOFF AUST P/L 67D	Work Order : EP050 ALS Quote Reference : EN/008		Page Number : 3 of Issue Date : 2 D		(ALS) <u>Ls Environmenta</u> i
Matrix Type: SOIL					Labora	tory Duplicates (DUP) Report
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-E: Acid Base Acc	counting - continued					
EA033-E: Acid Base Ac	counting - (QC Lot: 142526) - continued			kg CaCO3/t	kg CaCO3/t	%
EP0501418-003	10-14 - 0.5	Liming Rate	1 kg CaCO3/t	<1	<1	0.0
EP0501418-048	10-19 - 0.5	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501418	Page Number	:	4 of 5	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	2 Dec 2005	ALS Environme

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual	Results	Recovery Limits		
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits	
Analyte name	LOR			LCS	Low	High	
EA033-A: Actual Acidity			-				
EA033-A: Actual Acidity - (QC Lot: 142526)		pH Unit	pH Unit	%	%	%	
pH KCI (23A)	0.1 pH Unit	<0.1					
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02					
Titratable Actual Acidity (23F)	2 mole H+ / t	<2					
EA033-B: Potential Acidity							
EA033-B: Potential Acidity - (QC Lot: 142526)		mole H+ / t	mole H+ / t	%	%	%	
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10					
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02					
EA033-C: Acid Neutralising Capacity							
EA033-C: Acid Neutralising Capacity - (QC Lot: 142526)		% CaCO3	% CaCO3	%	%	%	
Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01					
Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10					
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01					
EA033-D: Retained Acidity							
EA033-D: Retained Acidity - (QC Lot: 142526)		mole H+ / t	mole H+ / t	%	%	%	
Acidity - Net Acid Soluble Sulfur (a-20J)	10 mole H+ / t	<10					
HCI Extractable Sulfur (20Be)	0.02 % S	<0.02					
KCI Extractable Sulfur (23Ce)	0.02 % S	<0.02					
Net Acid Soluble Sulfur (20Je)	0.02 % S	<0.02					
sulfidic - Net Acid Soluble Sulfur (s-20J)	0.02 % pyrite S	<0.02					
EA033-E: Acid Base Accounting							
EA033-E: Acid Base Accounting - (QC Lot: 142526)				%	%	%	
ANC Fineness Factor		<0.5					
Liming Rate	1 kg CaCO3/t	<1					
Net Acidity (acidity units)	10 mole H+ / t	<10					
Net Acidity (sulfur units)	0.02 % S	<0.02					

A Campbell Brothers Limited Company

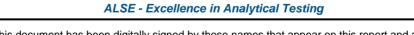
Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501418	Page Number	:	5 of 5	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	2 Dec 2005	ALS Environmental

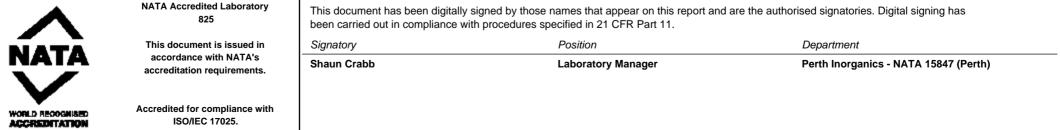
Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report

		Results	Recovery Limits Static Limits					
Analyte name	Laboratory Sample ID	Client Sample ID	Sample Result	Spike Recovery MS	Low	High		
				1				r
- (QC Lot:)						%	%	%


1 No Matrix Spike (MS) carried out on this Work Order.



ALS Environmental

CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	2 ALS Environmental Perth	Page	∴ 1 of 8
Contact	: MS JULIE PALICH	Contact	ິ Shaun Crabb	Work Order	⁻ EP0501391
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	∑ Shaun.Crabb@alsenviro.com		
Telephone	<i>∶</i> 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	2 08 9380 4060	Facsimile	£ 61-8-9209-7600		
Project	∑ 2145167D - Loop 10 ASS	Quote number	EN/008/05	Date received	∑ 4 Nov 2005
Order number	- Not provided -			Date issued	29 Nov 2005
C-O-C number	- Not provided -			No. of samples	- Received : 87
Site	[∠] Kwinana				Analysed : 25

Comments

This report for the ALSE reference EP0501391 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Specific comments for Work Order EP0501391

Retained Acidity not required because pH KCI greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

Page Number: 3 of 8Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501391

Analytical Results		Client Sample ID :	10-23 0.25	10-24 0	10-24 0.5	10-25 0	10-26 0.25
		Type / Description : ample Date / Time :	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00
	Lab	oratory Sample ID :	10.00	10.00	10.00	10.00	10.00
Analyte	CAS number LOF	R Units	EP0501391-002	EP0501391-007	EP0501391-009	EP0501391-011	EP0501391-016
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	9.2	6.0	6.1	6.1	5.9
Titratable Actual Acidity (23F)	2	mole H+/t	<2	7	5	5	7
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	0.44				
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	87				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	0.14				
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+/t	<10	12	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 4 of 8Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501391

Analytical Results	(Client Sample ID :	10-27 0	10-27 0.5	10-27 1.0	10-28 1.0	10-29 0.25
	•	ype / Description : mple Date / Time :	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00
Analyte	CAS number LOR	Units	EP0501391-021	EP0501391-023	EP0501391-025	EP0501391-031	EP0501391-033
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	8.0	6.6	6.7	5.8	5.7
Titratable Actual Acidity (23F)	2	mole H+ / t	<2	<2	<2	5	9
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		·					
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)			<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity		· · ·					
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	2.14	<0.01	0.19		
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	426	<10	37		
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	0.68	<0.01	0.06		
EA033-E: Acid Base Accounting		·					
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	<10	10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number : 5 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501391

Analytical Results		Cli	ient Sample ID :	10-30 0	10-31 0.25	10-31 0.75	10-31 1.25	10-31 1.75
	Sample M		pe / Description : ple Date / Time :	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00
		Labora	atory Sample ID :					
Analyte	CAS number	LOR	Units	EP0501391-038	EP0501391-044	EP0501391-046	EP0501391-048	EP0501391-050
EA033-A: Actual Acidity					•		•	
pH KCI (23A)		0.1	pH Unit	5.0	5.5	5.4	5.4	5.6
Titratable Actual Acidity (23F)		2	mole H+ / t	41	20	38	24	17
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	0.06	0.03	0.06	0.04	0.03
EA033-B: Potential Acidity			1		1	1	1	
Chromium Reducible Sulfur (22B)		0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting								-
ANC Fineness Factor		0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)		0.02	% S	0.06	0.03	0.06	0.04	0.03
Net Acidity (acidity units)		10	mole H+ / t	41	20	38	25	17
Liming Rate		1	kg CaCO3/t	3	1	3	2	1

Page Number : 6 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501391

El coolice i							
Analytical Results		Client Sample ID :	10-31 2.25	10-32 0.5	10-33 1.0	10-34 0.75	10-35 0.25
	•	ix Type / Description : Sample Date / Time :	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00
	Li	aboratory Sample ID :					
Analyte	CAS number L	OR Units	EP0501391-052	EP0501391-055	EP0501391-063	EP0501391-067	EP0501391-072
EA033-A: Actual Acidity							
pH KCI (23A)	0.	1 pH Unit	5.9	5.5	5.2	5.3	5.9
Titratable Actual Acidity (23F)		2 mole H+ / t	7	15	29	5	6
sulfidic - Titratable Actual Acidity (s-23F)	0.	02 % pyrite S	<0.02	0.02	0.05	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.)2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	1	0 mole H+/t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting					·		
ANC Fineness Factor	0.	5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.)2 % S	0.02	0.02	0.05	<0.02	<0.02
Net Acidity (acidity units)	1	0 mole H+/t	13	15	29	<10	<10
Liming Rate	,	kg CaCO3/t	<1	1	2	<1	<1

Page Number : 7 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501391

Analytical Results		Client Sample ID :	10-35 0.75	10-35 1.25	10-35 1.75	10-35 2.25	10-36 1.25
		Type / Description : ample Date / Time :	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00	SOIL 3 Nov 2005 15:00
	Lal	oratory Sample ID :					
Analyte	CAS number LC	R Units	EP0501391-074	EP0501391-076	EP0501391-078	EP0501391-080	EP0501391-086
EA033-A: Actual Acidity						•	
pH KCI (23A)	0.1	pH Unit	6.1	6.2	6.2	5.2	6.1
Titratable Actual Acidity (23F)	2	mole H+ / t	4	2	4	28	13
sulfidic - Titratable Actual Acidity (s-23F)	0.0	2 % pyrite S	<0.02	<0.02	<0.02	0.04	0.02
EA033-B: Potential Acidity						1	
Chromium Reducible Sulfur (22B)	0.0	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting							-
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.0	2 % S	<0.02	<0.02	<0.02	0.04	0.03
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	28	16
Liming Rate	1	kg CaCO3/t	<1	<1	<1	2	1

 Page Number
 : 8 of 8

 Client
 : PARSONS BRINCKERHOFF AUST P/L

 Work Order
 : EP0501391

Surrogate Control Limits

1 No surrogates present on this report.

ALS Environmental

QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 6
Contact	:	MS JULIE PALICH	Contact	: Shaun Crabb			
Address	:	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	: 10 Hod Way Malaga WA Australia 6090	Work order	:	EP0501391
					Amendment No.	:	1
Project	:	2145167D - Loop 10 ASS	Quote number	: EN/008/05	Date received	:	4 Nov 2005
Order number	:	- Not provided -			Date issued	:	15 Dec 2005
C-O-C number	:	- Not provided -					
Site	:	Kwinana					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	87
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	25

This final report for the ALSE work order reference EP0501391 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

Retained Acidity not required because pH KCl greater than or equal to 4.5

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. Conversion to liming rate in kg/m3 = kg/t x wet bulk density in t/m3.

This workorder has been amended only to inlude the QC reports.

ALSE - Excellence in Analytical Testing

	NATA Accredited Laboratory - 825	This document has been digitally signed by those been carried out in compliance with procedures s	e names that appear on this report and are the authorised signatories. Digital signing has specified in 21 CFR Part 11.
NATÀ	This document is issued in	Signatory	Department
	accordance with NATA's accreditation requirements.	Shaun Crabb	Perth Inorganics - NATA 15847 (Perth)
WORLD RECOGNISED	Accredited for compliance with ISO/IED 17025		

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501391	Page Number	: 2 of 6	(ALS)
Project	:	2145167D - Loop 10 ASS	ALS Quote Reference	:	EN/008/05	Issue Date	: 15 Dec 20	05 ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

Laboratory Sample ID Client Sample ID Analvte name I OR Original Result Duplicate Result RPD EA033-A: Actual Acidity % EA033-A: Actual Acidity - (QC Lot: 140710) pH Unit pH Unit EP0501391-002 10-23 - 0.25 pH KCI (23A) 0.1 pH Unit 9.2 9.0 2.2 <2 <2 Titratable Actual Acidity (23F) 2 mole H+ / t 0.0 sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyrite S <0.02 <0.02 0.0 10-30 - 0 EP0501391-038 pH KCI (23A) 0.1 pH Unit 5.0 5.0 0.0 Titratable Actual Acidity (23F) 2 mole H+ / t 41 40 0.0 sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyrite S 0.06 0.06 0.0 % EA033-A: Actual Acidity - (QC Lot: 140711) pH Unit pH Unit 10-35 - 0.75 EP0501391-074 pH KCI (23A) 0.1 pH Unit 6.1 6.1 0.0 Titratable Actual Acidity (23F) 2 mole H+ / t 4 4 0.0 sulfidic - Titratable Actual Acidity (s-23F) 0.02 % pyrite S < 0.02 < 0.02 0.0 EA033-B: Potential Acidity EA033-B: Potential Acidity - (QC Lot: 140710) % S % S % EP0501391-002 10-23 - 0.25 Chromium Reducible Sulfur (22B) 0.02 % S < 0.02 < 0.02 0.0 Acidity - Chromium Reducible Sulfur (a-22B) 10 mole H+ / t <10 <10 0.0 EP0501391-038 10-30 - 0 Chromium Reducible Sulfur (22B) 0.02 % S 0.0 < 0.02 < 0.02 Acidity - Chromium Reducible Sulfur (a-22B) 0.0 10 mole H+ / t <10 <10 EA033-B: Potential Acidity - (QC Lot: 140711) % S % S % EP0501391-074 10-35 - 0.75 Chromium Reducible Sulfur (22B) 0.02 % S < 0.02 < 0.02 0.0 Acidity - Chromium Reducible Sulfur (a-22B) 10 mole H + / t<10 <10 0.0 EA033-C: Acid Neutralising Capacity EA033-C: Acid Neutralising Capacity - (QC Lot: 140710) % CaCO3 % CaCO3 % EP0501391-002 10-23 - 0.25 Acid Neutralising Capacity (19A1) 0.01 % CaCO3 0.44 0.44 0.0 Acidity - Acid Neutralising Capacity (a-19A1) 87 87 0.0 10 mole H+ / t sulfidic - Acid Neutralising Capacity (s-19A1) 0.14 0.14 0.0 0.01 % pyrite S EA033-E: Acid Base Accounting

Laboratory Duplicates (DUP) Report

(ALS)
LS Environmental

Page Number : 3 of 6

Project : 214516	67D - Loop 10 ASS	ALS Quote Reference : EN/008/	/05	Issue Date : 15	Dec 2005 📃	LS Environmenta
Matrix Type: SOIL					Laborate	ory Duplicates (DUP) Repor
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-E: Acid Base Acc	ounting - continued					
EA033-E: Acid Base Ac	counting - (QC Lot: 140710)					%
EP0501391-002	10-23 - 0.25	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0
EP0501391-038	10-30 - 0	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	0.06	0.06	0.0
		Net Acidity (acidity units)	10 mole H+ / t	41	41	0.0
		Liming Rate	1 kg CaCO3/t	3	3	0.0
EA033-E: Acid Base Ac	counting - (QC Lot: 140711)					%
EP0501391-074	10-35 - 0.75	ANC Fineness Factor		1.5	1.5	0.0
		Net Acidity (sulfur units)	0.02 % S	<0.02	<0.02	0.0
		Net Acidity (acidity units)	10 mole H+ / t	<10	<10	0.0
		Liming Rate	1 kg CaCO3/t	<1	<1	0.0

: EP0501391

Work Order

Client

: PARSONS BRINCKERHOFF AUST P/L

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501391	Page Number	:	4 of 6	(ALS)
Project	:	2145167D - Loop 10 ASS	ALS Quote Reference	:	EN/008/05	Issue Date	:	15 Dec 2005	ALS Environmen

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method	Actual	Results	Recov	very Limits
		blank result	Spike concentration	Spike Recovery	Dynamic R	ecovery Limits
Analyte name	LOR			LCS	Low	High
EA033-A: Actual Acidity		-				-
EA033-A: Actual Acidity - (QC Lot: 140710)		pH Unit	pH Unit	%	%	%
pH KCI (23A)	0.1 pH Unit	<0.1				
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02				
Titratable Actual Acidity (23F)	2 mole H+ / t	<2				
EA033-A: Actual Acidity - (QC Lot: 140711)		pH Unit	pH Unit	%	%	%
pH KCI (23A)	0.1 pH Unit	<0.1				
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02				
Titratable Actual Acidity (23F)	2 mole H+ / t	<2				
EA033-B: Potential Acidity						
EA033-B: Potential Acidity - (QC Lot: 140710)		mole H+ / t	mole H+ / t	%	%	%
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10				
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02				
EA033-B: Potential Acidity - (QC Lot: 140711)		mole H+ / t	mole H+ / t	%	%	%
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10				
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02				
EA033-C: Acid Neutralising Capacity						
EA033-C: Acid Neutralising Capacity - (QC Lot: 140710)		% CaCO3	% CaCO3	%	%	%
Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01				
Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01				
EA033-E: Acid Base Accounting						
EA033-E: Acid Base Accounting - (QC Lot: 140710)				%	%	%
ANC Fineness Factor		<0.5				
Liming Rate	1 kg CaCO3/t	<1				
Net Acidity (acidity units)	10 mole H+ / t	<10				
Net Acidity (sulfur units)	0.02 % S	<0.02				

A Campbell Brothers Limited Company

ALS	
LS Environmenta	

Page Number : 5 of 6

Project : 2145167D - Loop 10 ASS	ALS Quote Reference	: EN/008/05		Issue Date : 15 [Dec 2005	S Environmenta
latrix Type: SOIL				Method Blank	(MB) and Laboratory Cor	ntrol Samples (LCS) Repor
	Γ	Method blank	Actual	Results	Recov	ery Limits
		result Spike concentration		Spike Recovery	Dynamic Recovery Limits	
Analyte name	LOR			LCS	Low	High
EA033-E: Acid Base Accounting - continued						
EA033-E: Acid Base Accounting - (QC Lot: 140711)				%	%	%
ANC Fineness Factor		<0.5				
Liming Rate	1 kg CaCO3/t	<1				
Net Acidity (acidity units)	10 mole H+ / t	<10				
Net Acidity (sulfur units)	0.02 % S	<0.02				

: EP0501391

Work Order

Client

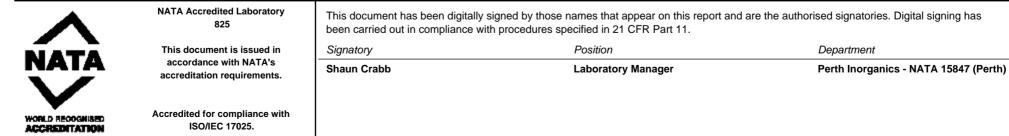
: PARSONS BRINCKERHOFF AUST P/L

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501391	Page Number	:	6 of 6	(ALS)
Project	:	2145167D - Loop 10 ASS	ALS Quote Reference	:	EN/008/05	Issue Date	:	15 Dec 2005	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report


		Actual	Results	Recovery Limits				
		Sample Result	Spike Recovery	Static	Limits			
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
- (QC Lot:)						%	%	%

1 No Matrix Spike (MS) carried out on this Work Order.

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	∴ 2 of 16
Contact Address	 MS JULIE PALICH P O BOX 1232 SUBIACO WA AUSTRALIA 6904 	Contact Address	ິ Shaun Crabb ິ 10 Hod Way Malaga WA Australia 6090	Work Order	⁻ EP0501387
E-mail	∵ jpalich@pb.com.au	E-mail	Shaun.Crabb@alsenviro.com		
Telephone	£ 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	<i>∷</i> 61-8-9209-7600		
Project	÷ 21451670	Quote number	EN/008/05	Date received	∴ 4 Nov 2005
Order number	ິ - Not provided -			Date issued	ź 25 Nov 2005
C-O-C number	🖓 - Not provided -			No. of samples	- Received : 245
Site	LOOP 10 ASS				Analysed : 60

Comments

This report for the ALSE reference EP0501387 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

Specific comments for Work Order EP0501387

Retained Acidity not required because pH KCl greater than or equal to 4.5

Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.

Page Number: 4 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results Client Sample ID :			10-37 1.75	10-38 0.75	10-39 0	10-39 0.5	10-39 1.0
	Sample Matrix T	ype / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		mple Date / Time :	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005
			15:00	15:00	15:00	15:00	15:00
	Labo	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501387-008	EP0501387-013	EP0501387-023	EP0501387-025	EP0501387-027
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	7.4	6.6	5.4	6.2	6.4
Titratable Actual Acidity (23F)	2	mole H+/t	<2	<2	10	<2	<2
sulfidic - Titratable Actual Acidity	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
(s-23F)		.,					
EA033-B: Potential Acidity		•					
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	<0.01	0.12			
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	<10	24			
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	<0.01	0.04			
EA033-E: Acid Base Accounting				•	•		
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+/t	<10	<10	13	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1
1		2			1	1	

Page Number : 5 of 16 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501387

Analytical Results	c	lient Sample ID :	10-39 1.5	10-39 2.0	10-39 2.5	10-39 3.0	10-40 2.75
		ype / Description : nple Date / Time :	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	Labor	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501387-029	EP0501387-031	EP0501387-033	EP0501387-035	EP0501387-047
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	6.9	6.5	6.4	6.4	6.2
Titratable Actual Acidity (23F)	2	mole H+/t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	1.09				
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	217				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	0.35				
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number : 6 of 16 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501387

						1	1	
Analytical Results	Client Sample ID :		10-41 0.75	10-42 1.25	10-43 0	10-44 0	10-44 0.5	
		Sample	/ Description : e Date / Time : ry Sample ID :	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
Analyte			Units	EP0501387-051	EP0501387-064	EP0501387-065	EP0501387-070	EP0501387-072
EA033-A: Actual Acidity						ļ		
pH KCI (23A)	(0.1	pH Unit	6.0	6.2	5.1	5.3	5.9
Titratable Actual Acidity (23F)		2 r	mole H+/t	<2	<2	19	7	<2
sulfidic - Titratable Actual Acidity (s-23F)	0	0.02	% pyrite S	<0.02	<0.02	0.03	<0.02	<0.02
EA033-B: Potential Acidity			· ·		-			
Chromium Reducible Sulfur (22B)	0).02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)		10 r	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting			·					·
ANC Fineness Factor	(0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0).02	% S	<0.02	<0.02	0.04	<0.02	<0.02
Net Acidity (acidity units)		10 r	mole H+/t	<10	<10	23	10	<10
Liming Rate		1 k	kg CaCO3/t	<1	<1	2	<1	<1

Page Number: 7 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

					1	1	
Analytical Results		Client Sample ID :	10-44	10-45	10-46	10-47	10-48
,,			1.0	1.0	0.25	0.25	0.5
	Sample Matrix Type / Description :		SOIL	SOIL	SOIL	SOIL	SOIL
	Sample Date / Time :			25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005
			15:00	15:00	15:00	15:00	15:00
	La	boratory Sample ID :					
Analyte	CAS number LC	DR Units	EP0501387-074	EP0501387-079	EP0501387-082	EP0501387-086	EP0501387-091
EA033-A: Actual Acidity							
pH KCI (23A)	0.2	pH Unit	5.8	5.6	5.6	5.4	5.8
Titratable Actual Acidity (23F)	2	mole H+ / t	<2	2	2	4	<2
sulfidic - Titratable Actual Acidity	0.0	2 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
(s-23F)							
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.0	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5	5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.0	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	11	12	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 8 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results	c	lient Sample ID :	10-49	10-49	10-50	10-51	10-51
	Sample Matrix T	ype / Description :	0 SOIL	0.5 SOIL	0.25 SOIL	0.25 SOIL	0.75 SOIL
	•	mple Date / Time :	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005
			15:00	15:00	15:00	15:00	15:00
	Labo	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501387-093	EP0501387-095	EP0501387-098	EP0501387-102	EP0501387-104
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	6.9	5.9	5.6	5.3	6.0
Titratable Actual Acidity (23F)	2	mole H+/t	<2	<2	2	12	4
sulfidic - Titratable Actual Acidity (s-23F)			<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		·				•	
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity		·				•	
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	1.04				
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	207				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	0.33				
EA033-E: Acid Base Accounting		·					
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	13	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 9 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results		Client Sample ID :	10-51 1.25	10-51 1.75	10-52 0	10-52 1.0	10-52 2.0
	-	Type / Description : ample Date / Time :	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	Lal	oratory Sample ID :					
Analyte	CAS number LC	R Units	EP0501387-106	EP0501387-108	EP0501387-109	EP0501387-113	EP0501387-117
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	5.8	5.9	6.1	8.7	7.2
Titratable Actual Acidity (23F)	2	mole H+ / t	7	11	2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.0	2 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.0	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.0	% CaCO3				2.44	2.56
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t				487	512
sulfidic - Acid Neutralising Capacity (s-19A1)	0.0	% pyrite S				0.78	0.82
EA033-E: Acid Base Accounting							
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.0	2 % S	<0.02	0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	10	13	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 10 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results	C	Client Sample ID :	10-53 0.75	10-54 1.25	10-55 0	10-56 0.25	10-57 0
	•	ype / Description : mple Date / Time :	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	Labo	ratory Sample ID :					
Analyte	CAS number LOR	Units	EP0501387-124	EP0501387-131	EP0501387-132	EP0501387-141	EP0501387-153
EA033-A: Actual Acidity						•	
pH KCI (23A)	0.1	pH Unit	7.0	5.8	5.4	5.7	5.5
Titratable Actual Acidity (23F)	2	mole H+/t	<2	5	11	<2	12
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3	<0.01				
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t	<10				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S	<0.01				
EA033-E: Acid Base Accounting							·
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	0.02
Net Acidity (acidity units)	10	mole H+/t	<10	<10	12	<10	14
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	1
/		-					

Page Number: 11 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results		Client Sample ID :	10-57	10-57	10-57	10-57	10-57
/ mary doar recourto			0.5	1.0	1.5	2.0	2.5
	Sample Mat	rix Type / Description		SOIL	SOIL	SOIL	SOIL
		Sample Date / Time		25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005
			15:00	15:00	15:00	15:00	15:00
	L	aboratory Sample ID	:				
Analyte	CAS number	.OR Units	EP0501387-155	EP0501387-157	EP0501387-159	EP0501387-161	EP0501387-163
EA033-A: Actual Acidity							
pH KCI (23A)	0	.1 pH Unit	5.4	6.1	5.9	5.8	5.9
Titratable Actual Acidity (23F)		2 mole H+/t	7	4	5	6	5
sulfidic - Titratable Actual Acidity	0.	02 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
(s-23F)							
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.	02 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	1	0 mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting			1				
ANC Fineness Factor	0	.5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.	02 % S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1	0 mole H+ / t	<10	<10	<10	10	<10
Liming Rate		1 kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 12 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results	Client Sample ID :		10-58	10-59	10-60	10-61	10-62
Analytical Results			1.25	0.25	0	0.25	0.75
		/pe / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
	Sar	nple Date / Time :	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005	25 Oct 2005
			15:00	15:00	15:00	15:00	15:00
	Labor	atory Sample ID :					
Analyte	CAS number LOR	Units	EP0501387-169	EP0501387-171	EP0501387-174	EP0501387-181	EP0501387-187
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	5.8	5.7	7.7	5.7	5.9
Titratable Actual Acidity (23F)	2	mole H+/t	5	6	<2	6	4
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		· ·					
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity							
Acid Neutralising Capacity (19A1)	0.01	% CaCO3			<0.01		
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t			<10		
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S			<0.01		
EA033-E: Acid Base Accounting		•		•			
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 13 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results		Client Sample ID :	10-63 0.25	10-63 0.75	10-63 1.25	10-63 1.75	10-64 0.5
		Type / Description : ample Date / Time :	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	Lab	oratory Sample ID :					
Analyte	CAS number LOF	t Units	EP0501387-189	EP0501387-191	EP0501387-193	EP0501387-195	EP0501387-198
EA033-A: Actual Acidity							
pH KCI (23A)	0.1	pH Unit	5.8	8.8	6.2	6.8	6.2
Titratable Actual Acidity (23F)	2	mole H+ / t	6	<2	<2	<2	2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	% pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity		·			·		
Chromium Reducible Sulfur (22B)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-C: Acid Neutralising Capacity		·					
Acid Neutralising Capacity (19A1)	0.01	% CaCO3		<0.01		3.33	
acidity - Acid Neutralising Capacity (a-19A1)	10	mole H+ / t		<10		666	
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01	% pyrite S		<0.01		1.07	
EA033-E: Acid Base Accounting		·					
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	% S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 14 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results		Client Sample ID :	10-65 0	10-66 0.25	10-67 0.5	10-68 0.25	10-68 0.75
	Sample Matrix Type / Description : Sample Date / Time :		SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	Lab	oratory Sample ID :					
Analyte	CAS number LO	R Units	EP0501387-203	EP0501387-210	EP0501387-218	EP0501387-221	EP0501387-223
EA033-A: Actual Acidity						•	
pH KCI (23A)	0.1	pH Unit	5.4	6.0	5.8	5.8	6.0
Titratable Actual Acidity (23F)	2	mole H+ / t	10	4	6	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.02	2 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.02	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	10	mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting							-
ANC Fineness Factor	0.5		1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.02	2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	10	mole H+ / t	10	<10	12	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Page Number: 15 of 16Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501387

Analytical Results		Client Sample ID	10-68 1.25	10-68 1.75	10-68 2.25	10-68 2.75	10-69 0
	Sample Matrix Type / D Sample Da			SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00	SOIL 25 Oct 2005 15:00
	La	boratory Sample ID	:				
Analyte	CAS number L	OR Units	EP0501387-225	EP0501387-227	EP0501387-229	EP0501387-231	EP0501387-233
EA033-A: Actual Acidity						•	
pH KCI (23A)	0.	1 pH Unit	5.9	5.8	6.0	6.0	5.7
Titratable Actual Acidity (23F)	2	mole H+ / t	<2	<2	<2	<2	<2
sulfidic - Titratable Actual Acidity (s-23F)	0.0	02 % pyrite S	<0.02	<0.02	<0.02	<0.02	<0.02
EA033-B: Potential Acidity							
Chromium Reducible Sulfur (22B)	0.0)2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
acidity - Chromium Reducible Sulfur (a-22B)	1) mole H+ / t	<10	<10	<10	<10	<10
EA033-E: Acid Base Accounting			-				
ANC Fineness Factor	0.	5	1.5	1.5	1.5	1.5	1.5
Net Acidity (sulfur units)	0.0)2 % S	<0.02	<0.02	<0.02	<0.02	<0.02
Net Acidity (acidity units)	1) mole H+/t	<10	<10	<10	<10	<10
Liming Rate	1	kg CaCO3/t	<1	<1	<1	<1	<1

Surrogate Control Limits

1 No surrogates present on this report.

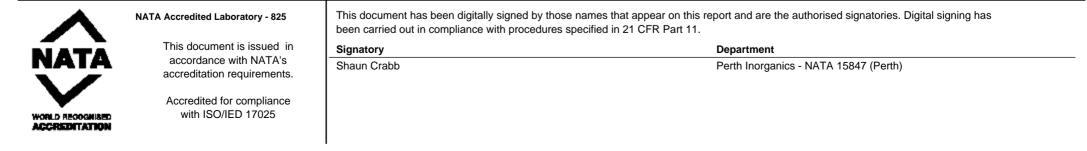
ALS Environmental

QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 6
Contact Address	:	MS JULIE PALICH P O BOX 1232 SUBIACO	Contact Address	: Shaun Crabb : 10 Hod Way Malaga	Work order	:	EP0501387
		WA AUSTRALIA 6904		WA Australia 6090			
					Amendment No.	:	
Project	:	21451670	Quote number	: EN/008/05	Date received	:	4 Nov 2005
Order number	:	- Not provided -			Date issued	:	25 Nov 2005
C-O-C number	:	- Not provided -					
Site	:	LOOP 10 ASS					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	245
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	60

This final report for the ALSE work order reference EP0501387 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.


This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

Work order specific comments

Retained Acidity not required because pH KCl greater than or equal to 4.5 Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.

ALSE - Excellence in Analytical Testing

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501387	Page Number	: 2 of 6	(ALS)
Project	:	21451670	ALS Quote Reference	:	EN/008/05	Issue Date	: 25 Nov 2005	ALS Environmental

Quality Control Report - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: SOIL

				-) = apiloatoo (= 01) 110pol
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-A: Actual Acidity						
EA033-A: Actual Acidity	- (QC Lot: 134935)			pH Unit	pH Unit	%
EP0501387-008	10-37 - 1.75	pH KCI (23A)	0.1 pH Unit	7.4	7.3	1.4
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EP0501387-051	10-41 - 0.75	pH KCI (23A)	0.1 pH Unit	6.0	6.0	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-A: Actual Acidity	- (QC Lot: 134936)			pH Unit	pH Unit	%
EP0501387-093	10-49 - 0	pH KCI (23A)	0.1 pH Unit	6.9	6.9	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EP0501387-124	10-53 - 0.75	pH KCI (23A)	0.1 pH Unit	7.0	7.0	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	<2	<2	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-A: Actual Acidity	- (QC Lot: 134937)			pH Unit	pH Unit	%
EP0501387-169	10-58 - 1.25	pH KCI (23A)	0.1 pH Unit	5.8	5.9	1.9
		Titratable Actual Acidity (23F)	2 mole H+ / t	5	4	29.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EP0501387-203	10-65 - 0	pH KCI (23A)	0.1 pH Unit	5.4	5.4	0.0
		Titratable Actual Acidity (23F)	2 mole H+ / t	10	10	0.0
		sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02	<0.02	0.0
EA033-B: Potential Acidit	у			•	·	•
EA033-B: Potential Acid	ity - (QC Lot: 134935)			% S	% S	%
EP0501387-008	10-37 - 1.75	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501387-051	10-41 - 0.75	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
	1					

Laboratory Duplicates (DUP) Report

LS Environmental	ALS
	LS Environmental

roject : 2145167	70	ALS Quote Reference : EN/008/05		Issue Date : 25	lov 2005 📃	s Environme
latrix Type: SOIL				-	Laborator	y Duplicates (DUP) F
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA033-B: Potential Acidity	y - continued					
EA033-B: Potential Acidi	ty - (QC Lot: 134935) - continued			mole H+ / t	mole H+ / t	%
EP0501387-051	10-41 - 0.75	Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EA033-B: Potential Acidi	ty - (QC Lot: 134936)			% S	% S	%
EP0501387-093	10-49 - 0	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501387-124	10-53 - 0.75	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EA033-B: Potential Acidi	ty - (QC Lot: 134937)			% S	% S	%
EP0501387-169	10-58 - 1.25	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10	<10	0.0
EP0501387-203	10-65 - 0	Chromium Reducible Sulfur (22B)	0.02 % S	<0.02	<0.02	0.0
		Acidity - Chromium Reducible Sulfur (a-22B)	<10	<10	0.0	
EA033-C: Acid Neutralisin	g Capacity			•		
EA033-C: Acid Neutralisi	ng Capacity - (QC Lot: 134935)			% CaCO3	% CaCO3	%
EP0501387-008	10-37 - 1.75	Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01	<0.01	0.0
		Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10	<10	0.0
		sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01	<0.01	0.0
EA033-C: Acid Neutralisi	ng Capacity - (QC Lot: 134936)			% CaCO3	% CaCO3	%
EP0501387-093	10-49 - 0	Acid Neutralising Capacity (19A1)	0.01 % CaCO3	1.04	1.11	7.0
		Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	207	222	7.0
		sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	0.33	0.36	7.0
EP0501387-124	10-53 - 0.75	Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01	<0.01	0.0
		Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10	<10	0.0
		sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01	<0.01	0.0

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501387	Page Number	:	4 of 6	
Project	:	21451670	ALS Quote Reference	-	EN/008/05	Issue Date		25 Nov 2005	ALS Environme

Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

Matrix Type: SOIL

Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual	Results	Recovery Limits		
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits	
Analyte name	LOR			LCS	Low	High	
EA033-A: Actual Acidity		-				-	
EA033-A: Actual Acidity - (QC Lot: 134935)		% pyrite S	% pyrite S	%	%	%	
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02					
Titratable Actual Acidity (23F)	2 mole H+ / t	<2					
EA033-A: Actual Acidity - (QC Lot: 134936)		% pyrite S	% pyrite S	%	%	%	
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02					
Titratable Actual Acidity (23F)	2 mole H+ / t	<2					
EA033-A: Actual Acidity - (QC Lot: 134937)		% pyrite S	% pyrite S	%	%	%	
sulfidic - Titratable Actual Acidity (s-23F)	0.02 % pyrite S	<0.02					
Titratable Actual Acidity (23F)	2 mole H+ / t	<2					
EA033-B: Potential Acidity							
EA033-B: Potential Acidity - (QC Lot: 134935)		mole H+ / t	mole H+ / t	%	%	%	
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10					
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02					
EA033-B: Potential Acidity - (QC Lot: 134936)		mole H+ / t	mole H+ / t	%	%	%	
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10					
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02					
EA033-B: Potential Acidity - (QC Lot: 134937)		mole H+ / t	mole H+ / t	%	%	%	
Acidity - Chromium Reducible Sulfur (a-22B)	10 mole H+ / t	<10					
Chromium Reducible Sulfur (22B)	0.02 % S	<0.02					
EA033-C: Acid Neutralising Capacity							
EA033-C: Acid Neutralising Capacity - (QC Lot: 134935)		% CaCO3	% CaCO3	%	%	%	
Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01					
Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10					
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01					
EA033-C: Acid Neutralising Capacity - (QC Lot: 134936)		% CaCO3	% CaCO3	%	%	%	

ALS
 Environmental

Client : PARSONS BRINCKERHOFF AUST P/L Project : 21451670	Work Order ALS Quote Reference	: EP0501387 : EN/008/05		Page Number : 5 of Issue Date : 25 N		(ALS) S Environmenta
Matrix Type: SOIL				Method Blank	(MB) and Laboratory Con	trol Samples (LCS) Report
		Method blank	Actual	Results	Recove	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic Recovery Limits	
Analyte name	LOR			LCS	Low	High
EA033-C: Acid Neutralising Capacity - continued						
EA033-C: Acid Neutralising Capacity - (QC Lot: 134936) - continued		% CaCO3	% CaCO3	%	%	%
Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01				
Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01				
EA033-C: Acid Neutralising Capacity - (QC Lot: 134937)		% CaCO3	% CaCO3	%	%	%
Acid Neutralising Capacity (19A1)	0.01 % CaCO3	<0.01				
Acidity - Acid Neutralising Capacity (a-19A1)	10 mole H+ / t	<10				
sulfidic - Acid Neutralising Capacity (s-19A1)	0.01 % pyrite S	<0.01				

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501387	Page Number	:	6 of 6	(ALS)
Project	:	21451670	ALS Quote Reference	:	EN/008/05	Issue Date	:	25 Nov 2005	ALS Environmental

Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

Matrix Spike (MS) Report

		Actual		Recovery Limits				
Analyte name	Laboratory Sample ID	Client Sample ID	Spike Concentration	Sample Result	Spike Recovery MS	Low	: Limits High	
- (QC Lot:)					%	%	%	

1 No Matrix Spike (MS) carried out on this Work Order.

ł

Project	Loop 10 ASS	Project Manager	Office	Perth
	-	Julie Palich	Job No.	2145167D
Client	ECOS	9489 9722	Page No.	
Location	Kwinana	jpalich@pb.com.au	0	· · · · · · · · · · · · · · · · · · ·

	Sample Name/			
	Depth (m)	pHF	pHFOX	Scr Suite
	10-1 0	6.96	5.79	10-1
	10-1 0.25	6.90 6.94	5.93	28/11/05
	10-1 0.5	6.97	5.50	
\bigcirc	10-1 0.75	6.49	5.49	
U	10-1 1.0	6.78	6.02	X
	10-1 1.25	8.23	6.73	
		0.20	0.70	10-2
	10-2 0	8.52	6.22	x
0	10-2 0.25	8.74	6.31	^
	10-2 0.5	8.48	6.86	
~				10-3
B	10-3 0	7.11	6.05	X
_	10-3 0.25	6.28	5.45	
Ð	10-3 0.5	6.61	5.56	x
0	10-3 0.75	6.56	5.75	
S	10-3 1.0	6.54	5.86	x
	10-3 1.25	6.48	5.35	
6	10-3 1.5	6.48	5.34	X
	10-3 1.75	6.28	5.61	
Ð	10-3 2.0 10-3 2.25	6.10	5.62	X
6	10-3 2.25 10-3 2.5	6.72	5.70	
8	10-3 2.75	6.56 6.15	5.44	X
(9)	10-3 3.0	6.15	5.36 5.29	
	10 0 0.0	0.27	0.29	x 10-4
, ,	10-4 0	6.43	5.33	
	10-4 0.25	6.04	5.29	
	10-4 0.5	6.23	5.33	
	10-4 0.75	6.72	5.57	
(10)	10-4 1.0	6.51	5.36	X
	10-4 1.25	6.17	5.36	
	10-4 1.5	6.30	5.35	
	10-4 1.75	6.07	5.40	
	10-4 2.0	6.24	5.41	
	10-4 2.25	6.86	5.54	
	10-4 2.5	6.41	5.31	
	10-4 2.75	6.34	5.31	
ŀ	10-4 3.0	6.32	5.30	
ŀ	10 5 0	<u> </u>		10-5
	10-5 0 10-5 0.25	6.41 6.01	5.67	
	10-5 0.5		5.30	
	10-5 0.75	6.23 6.60	5.44 5.67	
	10-5 1.0	6.39	5.87 5.36	
	10-5 1.25	6.11	5.30	
· · · · · ·	10-5 1.5	6.11	5.22	X
	10-5 1.75	7.26	6.15	
	10-5 2.0	6.16	5.25	
	10-5 2.25	6.01	5.25	
			1	1

	Project	Loop 10 A	<u>s</u> s	Project Manager Julie Palich	Office	Perth
	Client	ECOS	-	9489 9722	_ Job No.	2145167D
	Location	Kwinana	-	jpalich@pb.com.au	Page No.	
			-	Ipanen(app.com.au		
	Sample Name/			T		
	Depth (m)	pHF	pHFOX		Scr Suite	
	10-5 2.5	6.06	5.24		·	
	10-5 2.75	6.02	5.18			
	10-5 3.0	8.06	6.22			
0	-	· · · · · · · · · · · · · · · · · · ·		10-12		·
D	10-12 0	5.52	4.89		x	
	10-12 0.25	6.04	5.42			
(13)		6.69	5.95		х	
	10-12 0.75	6.73	6.07			
- (14)	10-12 1.0	6.99	6.13		x	
	10-12 1.25	7.01	5.94	· ·		
(S)	10-12 1.5	7.19	6.92		x	
•	10-12 1.75	6.55	5.71			
(6)	10-12 2.0	6.89	5.99		x	
\sim	10-12 2.25	7.71	6.17			
(IJ	10-12 2.5	6.77	5.96		x	
-	10-12 2.75	6.80	5.98			
				10-13		
	10-13 0	7.58	6.36			
	10-13 0.25	7.32	6.09	2 · · · · · · · · · · · · · · · · · · ·		
	10-13 0.5	7.80	5.79		X	
	10-13 0.75	8.04	6.63			
	10-13 1.0	7.70	6.27			
	10-13 1.25	7.64	6.14			
	10-13 1.5	7.56	6.17			
	10-13 1.75	7.25	6.09			
	10-13 2.0	6.88	5.62			1
	10-13 2.25	7.54	6.16			

	Yellow Page	e - Project File Copy e - Remains in Book	Bathurst dney Road, Kelso NSW (2) 6331 4188 Fax: (02) Singleton George Street, Singleton (2) 6572 3377 Fax: (02)	2795 SL 6331 6798 Te NSW 2330 10	I: (02) 4929 Adela 1 Pirie Str	Floor, 55 Bolton Str 9 3900 Fax: (02) 49	29 729 100	9	e NSW, 2	2300	12th Tel: (Leve	07) 3218 222 Melbourn 17, 457 St. Ki	ward Street, Brisba 2 Fax: (07) 3831 42 3 Ida Road, Melbourr 1 Fax: (03) 9861 11	Ine QLD 4000 589 23 Tel: (Ine VIC 3004 9 Bla	Perth Hay Street, Subiaco WA 6008 08) 9489 9700 Fax: (08) 9380 4060 Sydney xland Road, Rhodes NSW 2138 02) 9743 0333 Fax: (02) 9736 1568	Chain of Custody Order No: 21843
Job Title:	Loop	10 ASS	(DBN)	GP)	21	РВ ЈОБ N 45 167	RELEASE AND A	ser:				Job Loc NØNØ	adap bigit Philip yang bining ya	Project Ma Results Exp	nager: المانعـ	Palich. 1 for advice.
Laboratory	Name:	ALS			Teri	ns of Busine	ss _		PB		C	ther	Checked	Fax Results	s to:	
Address:	10 He Malage	a way							$\mathbf{\mathbf{x}}$	1				Fax Number		792.
Fax Numbe		9209 7600						,	/ ``	\$					et of Results Require	
Phone Num		9209 7655	-	n an Ne Larian San San San San San San San San San San		Φ								Format:		
Contact Na	me:	Jan Houlaba) \.			Typ				<u>u</u>	0			Turnarounc	Time Required:	
Delivery Me	thod:	courier			*	utive	\mathbf{x}			100	5			Invoice to:		
Quote Num	ber:				in	erve	ed		×					Comments		
Date Sampled	Time	Sample I.D.	Container Size	Sample Location	Medium*	Preservative Type	Filtered (X)	H	BTEX		Metals**			Initials		nts/Additional Information I/or Analysis Required
8/11/05	•	10-11 to 10-6	1x Bag/sample		S									BW.	Dry+ Hold	Samples as
-			J' /												attached. 1	NIL advise samples
															for Sc	R suite early
									ļ	, I			1 1			L
	, 					·			AL	.S			nental		Frail wit	the Sample Int
										۱۸		erth ∢ Ord	or			n sumpe tos
3n															To follow.	1
								in,		E	PU	501	4/4			-
								.		N NN I						
				ana ang ang ang ang ang ang ang ang ang			,							We set of a set of the		
	-										eport Ver	sion: AliquotL	abel 1.02			
				EN ESPERIO SE COMUNICATION COMUNICATION COMUNICATION COMUNICATION COMUNICATION COMUNICATION COMUNICATION COMUN				urumu ¹	Tel	eph	one	61-8-9	209-7655			
				******		1		I						-		
Relinquished b	y: B .)	Neekas.	Relinquished b	y:	.I				Relir	nquisl	hed by	:		1	Medium*: S = Soil,	W = Water, V = Vapour
Date & Time:	8/11/0		Date & Time:		anana manari nana ani ' anan		~		Date	e & Tii	me:			มมมหางคะนี้ แม่หวามการจากการจากการจากการจากการจาก	Anton January	following to be tested)
Company:		PB-	Company:			. '			Com	ipany	/:				Metals: Al As E	e Cd Co Cr Cu Fe Hg
Signature:	R	et .	Signature:						Sign	ature	»:				Li. Mg N	An Ni Pb Se Sn V Zn
Received in Go & Condition by	ood Order (Name): R	. Walther.	Received in Go & Condition by									od Order Name):			Samples on Ice:	Yes No
Date & Time:	1 2	1620	Date & Time:						Date	& Ti	me:				Diagon for head	k a signed convertion
Company:	PUSE		Company:						Com	ipany	/:					k a signed copy when ceived at the laboratory
Signature:	algustat	ther	Signature:						Sign	ature):					control at the laboratory

Rebecca Walther

From:	Palich, Julie [JPalich@pb.com.au]
Sent:	Tuesday, 15 November 2005 10:34 AM
То:	Rebecca Walther
Subject:	FW ⁻ Soil Sample ID's - PB .lob #2145167A (PB CoC Ref # 21843)

From: Weekes, Bernard Sent: Monday, 14 November 2005 09:41 To: perth@alsenviro.com Cc: Palich, Julie Subject: Soil Sample ID's - PB Job #2145143A (PB CoC Ref # 21843)

Customer service officer,

Please find below soil sample id's for a batch of soil samples that were sent to ALS laboratory late lastweek. Julie Palich (PB Project manager) will notify ALS later in the week, as to which samples she intends to have analysed for reduced chromium. Date sampled (8/11/05)

Sample ID's

10_11 (Surface), 10_11 (0.25m), 10_11 (0.5m), 10_11 (0.75m), 10_11 (1m), 10_11 (1.25m), 10_11 (1.5m), 10_11 (1.5m), 10_11 (1.5m), 10_11 (1.5m), 10_10 (0.25m), 10_10 (0.5m), 10_10 (0.75m), 10_10 (1m), 10_10 (1.25m), 10_10 (1.5m), 10_10 (1.5m), 10_10 (1.75m), 10_10 (1.75m), 10_10 (0.5m), 10_9 (0.75m), 10_9 (1m), 10_9 (1.25m), 10_9 (1.5m), 10_9 (1.75m), 10_9 (1.5m), 10_9 (1.5m), 10_9 (1.5m), 10_9 (1.5m), 10_9 (1.5m), 10_10 (1.5m), 10_

Kind Regards, Bernie

Bernard Weekes Environmental Scientist Contaminated Land Management Parsons Brinckerhoff Australia Pty Limited 1 Alvan Street PO Box 1232 Subiaco WA 6008 Perth AUSTRALIA

	Yellow Page	- Laboratory Copy e - Project File Copy e - Remains in Book	Bathurst 59 Sydney Road, Kelso NSV Tel: (02) 6331 4188 Fax: (02) Singleton 100 George Street, Singletor Tel: (02) 6572 3377 Fax: (02)	V 2795 S) 6331 6798 T [n NSW 2330 1	uite 1, 3 el: (02) 4 d Ade 01 Pirie 9	Street, Adelaide SA 5 405 4300 Fax: (08) 8	929 729 000 105 430	99 01	-	, 2300	12ti Tel: Lev	(07) 3218 Melbo i el 7, 457 9	18 Edwan 2222 Fa urne St. Kilda F	d Street, Brisba x: (07) 3831 42 Road, Melboun x: (03) 9861 11	223 те VIC	Tel: (08)	y Street, Subiaco WA 6008 94899700 Fax: (08) 9380 4060 rdney nd Road, Rhodes NSW 2138 9743 0333 Fax: (02) 9736 1568	Chain of Custody Order No: 24455
Job Title:	Loop IC	ASS				PB Job					Sugar Sector Sector	Job L	He FITTER States Fitter on or		1153 BULL PARTY	Project Mana		Palich
	Name: AL					21951e		•_	РВ) Dther	ntanan pinin	<u>~~</u> Checked	pipining mit	Results Expe Fax Results t		L for cource
		j urg		1. Alternation					\							Fax Number:	BETREAMER AND PERFORMANCE AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A STREAM AND A S	
	Mele	s cono							\times)					1.131-120 14030	APRIL OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	1485 T	and a second standard standard state of the second state of the second state of the second state of the second
		7 7600													· 2005		of Results Require	<u>d: Y / N</u>
		197-55 Houldhan				Iype					s .				122	Format: Turnaround T	ime Required:	
	ethod: 🔊				*	tive	x								1000	Invoice to:		
Quote Num	and the second second second second second second second second second second second second second second second				Medium*	² reservative Type	Filtered (X)	;	$ \times $	PAH's	UU/UP/PI Metals**					Comments:		
Date Sampled	Time	Sample I.D.	Container Size	Sample Location	Mec	Pres	Filte	HdT	BTEX	AF C	Met	-				Initials		nts/Additional Information /or Analysis Required
4111,05		10-14 to 10	-an Baysk	mple	S											SP	Bry+ HO	ld Samples as
																		1. W. 11 advise
				-													semples	6 Scr suite st week w/semple 105
					_												early net	st week
																	-e-mall	Wisemde 105
																	to forta	J.
	1									-							:	
																		ALS Environmental
																		Perth
· · · · · · · · · · · · · · · · · · ·	· · · ·																	Work Order
				· · · · · · · · · · · · · · · · · · ·														EP0501418
Relinquished b	·		Relinquished t	oy:							shed by	y:		۰ <u>،</u>		des for data da la compañía en una compañía como de de como como en esta	Medium*: S = S	Report Version: AliquotLabel 1.02
		4:00.pm	Date & Time:							e & T npan								
Company: PB Company: Signature: PIM Signature:				-				nature	-						••	An Ni Pb Se Sn V Zn		
Received in Ge & Condition by		. Watther	Received in G & Condition by			r. u			Rec	ceivec	d in Go	od Ord (Name						Yes No
Date & Time:	4/11/05		Date & Time:	· · · · /						e & T		•						
Company:	2 ALSE	0	Company:						Cor	mpan	y:				*******			k a signed copy when ceived at the laboratory
Signature: Signature:								Sigr	nature	e:				samples are received at the laboratory				

DB

ě

Project	Loop 10 ASS	Project Manager: Julie Palich	Office Perth Job No. 2145167D
Client	ECOS	9489 9722	_ Page No
Location	Kwinana	jpalich@pb.com.au	- .

		ple Name/ epth (m)	Dry& Hold	S _{CR} Suite		Comments
	-		· · · · · · · · · · · · · · · · · · ·		10-14	
1	10-14		X			
2 2	10-14		×			
34	10-14		x			
	10-14		x			
ר א			x			· · · ·
	10-14		x			
	10-14		X			
	10-14		x			
٩V	10-14	2.0	x		40.45	
lo	10-15	0			10-15	
	10-15		x			
	10-15	0.25	x → x			
	10-15	0.75	××			
	10-15	1.0	x			
1 1	10-15	1.25	x			
	10-15	1.5	x		. =	
	10-15		x	-		
4	10-15	2.0	x			
					10-16	
	10-16		х			
20	10-16	0.25	х	-	4	
ર્ય	10-16	0.5	x			
. u	10-16	0.75	x	2	•	
⁵ 23	10-16	1.0	x			
	10-16		X		-	
	10-16		ing and X			
		1.75	X			
12	10-16	2.0	X			
29	10-17	0			10-17	
29	10-17	0.25	X		-	
i io		0.25	x			
31	10-17	0.5	x			
Q	10-17	1.0	X X			
22	10-17	1.0	X			a second s
	10-17	1.5	x			the second second second second second second second second second second second second second second second s
	10-17		X		J.	
, La	10-17	2.0	x	at a		· · · · · ·
		_			10-18	······
27	10-18	0	x			
35	10-18	0.25	x			
39	10-18	0.5	x			
Ца	10-18	0.75	x			
41	10-18	1.0	x			
42	10-18	1.25	х	$r = f^{(1)}$		
ч	10-18		x			
		1.75	х			
45	10-18	2.0	X I			

Project	Loop 10 ASS	Project Manager:	Office Perth
		Julie Palich	Job No. 2145167D
Client	ECOS	9489 9722	Page No.
Location	Kwinana	jpalich@pb.com.au	

	Sample Name/			
	Depth (m)	Dry& Hold	S _{CR} Suite	Comments
				10-19
	10-19 0	x		
41	10-19 0.25	X		
48	10-19 0.5	×		
47	10-19 0.75	x		
	10-19 1.0	×		
	10-19 1.25	x		
	10-19 1.5	X		
	10-19 1.75	X		
	10-19 2.0	X		
55	10-19 2.25	X		
51	40.00	r		10-20
51	10-20 0	X		
-0	10-20 0.25	x		
	10-20 0.5	X		
	10-20 0.75	x		
	10-20 1.0	X		
	10-20 1.25	X		
62	10-20 1.5	X		
63	10-20 1.75	X		
bE	10-20 2.0	x	I	40.04
6<	10-21 0			10-21
	10-21 0.25	X		
	10-21 0.5	X X		
181	10-21 0.0	^		10-22
68	10-22 0	x		10-22
	10-22 0.25	x		
	10-22 0.5	x		
	10-22 0.75	x		
12	10-22 1.0	x		
	10-22 1.25	x		
	10-22 1.5	x		
ખા				

Chain of Custody

		Project Client Location	Loop 10 ASS ECOS Kwinana	Project Manager: Julie Palich 9489 9722 jpalich@pb.com.au	Office Perth Job No. 2145167D Date: 4/11/2005
	ĸ	Sample Name/ Depth (m)	Dry & Hold S _{CR} Suite		Comments
	しちちんしょ	10-23 0 10-23 0.25 10-23 0.5 10-23 0.75 10-23 1.0 10-23 1.25	X X X X X X X	10-23	
al	8	10-24 0 10-24 0.25 10-24 0.5 10-24 0.75 10-24 1.0	X X X X X X	10-24	
J	15 14	10-25 0 10-25 0.25 10-25 0.5 10-25 0.75	X X X X X	10-25	— ALS Environmental
	17 18 29	10-26 0 10-26 0.25 10-26 0.5 10-26 0.75 10-26 1.0 10-26 1.25	X X X X X X		Perth Work Order EP0501391
	なびない	10-27 0 10-27 0.25 10-27 0.5 10-27 0.75 10-27 1.0		10-27	Report Version: AliquotLabel 1.02 Telephone: 61-8-9209-7655
	28 29 30 31	10-27 1.25 10-28 0 10-28 0.25 10-28 0.5 10-28 0.75	X X X X X X	10-28	
	34 34 30 36	10-28 1.0 10-29 0 10-29 0.25 10-29 0.5 10-29 0.75	X X X X X X	@10-29	-
	38 39 40 4	10-29 1.0 10-29 1.25 10-30 0 10-30 0.25 10-30 0.5 10-30 0.75		10-30	

ł

Chain of Custody

1

Project	Loop 10 ASS	Project Manager: Julie Palich	Office <u>Perth</u> Job No. 2145167D
Client Location	ECOS Kwinana	9489 9722 jpalich@pb.com.au	Date: <u>4/11/2005</u>
Sample Name/	<u>.</u>		·

	Sam	ple Name/			
	De	epth (m)	Dry & Hold	S _{CR} Suite	Comments
45		1.0	X		
			L		10-31
. a c	10-31	0	Х		
45	10-31	0.25	X		
crc.	10-31	0.5	x		
1	10-31 10-31	0.75	×		
uR	10-31	1.0			
109	10-31		X	0	
Co	10-31	1.25	Х		
	10-31	1.5	Х		
51	10-31	1.75	Х		
52	10-31	2.0	Х		
55	10-31	2.25	X		
					10-32
54	10-32	0.	Х		
55	10-32	0.25	х		
5	10-32	0.5	х		
ŝ	10-32	0.75	х		
		1.0	х 🗳	:	,
	10-32		X		
		1120			10-33
40	10-33	0	Х		
61		0.25	X		
62	10-33	0.20	· X		
		0.75			
	10-33		X		
64	10-33	1.0	X		10-34
65	10-34	0			10-04
			X	1	
	10-34		X	4.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 - 1.00 -	and the second second second second second second second second second second second second second second second
67	10-34	0.5	X		
	10-34		X		
		1.0	X		
	10-34		Х		
11	10-34	1.5	Х		
					10-35
N	10-35		х		
		0.25	х		ų
74	10-35	0.5	X		
45	10-35	0.75	х		
76	10-35	1.0	х		$(x, y) = \frac{1}{V}$
71		1.25	х		
70		1.5	х		
		1.75	Х		
		2.0	X		1977
	10-35		x		
n				I	10-36
22	10-36	0	Х	1	
	10-36		x		
27	10-36 10-36	.0.5	×		
5	10.00	0.0			
82	10-36	1.0	X		
96	10-36	1.0	X	ł	

1

Loop 10 ASS	Project Manager:	Office Perth
	Julie Palich	Job No. 2145167D
ECOS	9489 9722	Date: 4/11/2005
Kwinana	jpalich@pb.com.au	
		-
	ECOS	Julie Palich ECOS 9489 9722

	Sample Name/			
	Depth (m)	Dry & Hold	S _{CR} Suite	Comments
81	10-36 1.25	Х		
8	10-36 1.5	х		
		L		

Chain of Custody

1

1.

	Project Client	Loop 10 ASS		Project Manager Julie Palich 9489 9722	Office Perth Job No. 2145167D Page No.
	Location	Kwinana		jpalich@pb.com.au	<u>.</u>
	Sample Name/			· · ·	······································
	Depth (m)	Dry & Hold S _{CR} S	Suite		Comments
ì	10-37 Q			10-37	
. 2		X X			
3	10-37 0.5	x			
		x			
4	10-37 1.0	x			
ų		×		•	
	10-37 1.5	X			
Ś		X X	(، در ۲۰۰۰ س
-1	10-37 2.0	X		10-38	
(0	10-38 0	X		10-30	
	10-38 0.25	x			
	10-38 0.5	x		AL	S Environmental
	10-38 -0.75	X X	(Perth
	10-38 1.0	X			Work Order
	10-38 1.25	X			
,	10-38 1.5 10-38 1.75	X		1	EP0501387
	10-38 2.0	× ×			
	10-38 2.25	X			
	10-38 2.5	x			Report Version: AliquotLabel 1.02
	10-38 2.75	х		Tele	phone : 61-8-9209-7655
٢٢	10-38 3.0	X			·····
25	10-39 0			10-39	
	10-39 0.25	X X X			
	10-39 0.5	x x			
	10-39 0.75	x			
21	10-39 1.0	x x			
	10-39 1.25	X			
	10-39 1.5 10-39 1.75	X X			
	10-39 1.75	x x x			
	10-39 2.25	x	1		
33	10-39 2.5	x x			1
24	10-39 2.75	x			
35	10-39 3.0	X X		· · · · · · · · · · · · · · · · · · ·	
Цı	10-40 0	······	1	10-40	· · · · · · · · · · · · · · · · · · ·
37	10-40 0 10-40 0.25	X X			
38	10-40 0.23	X X			
	10-40 0.75	X			
HO	10-40 1.0	x			
ul	10-40 1.25	Х			
u2	10-40 1.5	x			
	10-40 1.75	X		-	
	10-40 2.0 10-40 2.25	X [*] X			
	10-40 2.5	×			
- 1	- 1	I State	1		I

TOO YEARS .

Project	Loop 10 ASS	Project Manager	Office Perth
		Julie Palich	Job No. 2145167D
Client	ECOS	9489 9722	Page No.
Location	Kwinana	jpalich@pb.com.au	

	San	nple Name	e/		1	
		epth (m)		Dry & Hold	Son Suite	Commente
		2.75				Comments
	10-40			X	<u> </u>	
						10-41
- Tr	10-41	0		Х		
	10-41					
			·	Х		
	10-41			Х		
- 5	10-41	0.75		x	х	
6	10-41	1.0		×		
ć	10-41	1 25				
- 56	10-41			х		
	10-41	1.5		X		
61	10-41	1.75		х		
ي ا	10-41	2.0		x		
Ġ	10-41 10-41 10-41	2.25				
	10-41			Х		
ร	10-41	. 2.5		X		
						10-42
SE SE	10-42	0	T	х	T	
	10-42			x		
	10-42					
	1			Х		
	10-42		1	X		w.
67	10-42	1.0		x		· ·
(c ²	10-42	1.25		х	x	
•	<u> </u>		I_	<u> </u>	^	10.40
64	10-43	Ó	<u> </u>			10-43
				X	X	· · · · ·
	10-43			X		
64	10-43	0.5		x		
	10-43			х		
	10-43					
(J)	10-43	1.0		Х		
						10-44
61	10-44	0		X	х	
70	10-44	0.25		×		·
71	10-44	0.5				
72				X	Х	
				×		
-15	10-44	1.0		Х	X	
:						10-45
14	10-45	0		Х	<u> </u>	
	10-45			1	ļ	
-10	10-40	0.20		X	1	
	10-45			X		
	10-45			x		
าใ	10-45	1.0		х	×	
าร์	10-45	1 25		x		
·]				^	<u> </u>	
	10.12				······	10-46
	10-46			X	Ì	
31	10-46	0.25		X	х	
	10-46			x		
	10-46					
· 4		0.10		X		
		-				10-47
34	10-47	0		X	Γ	
85	10-47	0.25		x	×	
	10-47			x		
				1		
814	10-47	0.70		X		
						10-48

Chain of Custody

	Project	Loop 10 AS	<u>S</u> S	Project Manager Julie Palich	Office <u>Perth</u> Job No. 2145167D
	Client	ECOS		9489 9722	Page No. 2143107D
	Location	Kwinana		jpalich@pb.com.au	/ ugo ino
				<u></u>	
	Sample Name/				
	Depth (m)	Dry & Hold	S _{CR} Suite		Comments
	10-48 0	Х			
	10-48 0.25	Х			
	10-48 0.5	Х	х		
a	10-48 0.75	X	· · · · · · · · · · · · · · · · · · ·		
A 1	10.10.0	- <u>r</u> ·		10-49	
	10-49 0	Х	Х		
	10-49 0.25	X			
	10-49 0.5	Х	Х		
પુ	10-49 0.75	X			
۵c	10-50 0	T		10-50	
	10-50 0.25	X	V		
4	10-50 0.5	X X	Х		
44	10-50 0.75	X			
•	10 00 0.75	· · · ·	·····	10-51	
107 10	10-51 0	X	··	10-51	
•	10-51 0.25	X	х		
	10-51 0.5	X			
	10-51 0.75	x	х		
100	10-51 1.0	×			
(185	10-51 1.25	×	X		
106	10-51 1.5	X			
6	10-51 1.75	x	X		
101	1			10-52	· · · · · · · · · · · · · · · · · · ·
ic	10-52 0	X	Х		
ເປັ	10-52 0.25	Х			
	10-52 0.5	X			
	10-52 0.75	X			
	210-52 1.0	×	Х		
	10-52 1.25	×			
	10-52 1.5 10-52 1.75	Х			
(16	10-52 1.75 10-52 2:0	X			
in	10-52 2.25	X	X		
		X X	1		
ii	10-52 2.5	x			
10	10-52 2.5 10-52 2.75	^		10-53	······································
	10-53 0	X		10-00	
	10-53 0.25	×			
	10-53 0.5	X.	ł		
	10-53 0.75	x	x		
	10-53 1.0	X			
			L	10-54	
	10-54 0	Х			
	10-54 0.25	X			
	10-54 0.5	x			
126	10-54 0.75	X			
	10-54 1.0	х			
(30	10-54 1.25	X	х		
ſ		9 j. 1		10-55	

熱

1

Chain of Custody

Project		Loop 10 AS	SS	Project Ma	anager	Office Perth			
					Julie Palich			2145167D	
	Client		ECOS		9489 9722		Page No.		
	Locati	ion	Kwinana		jpalich@pb.co	<u>m.au</u>			_
							-		
	[· · · · · · · · · · · · · · · · · · ·		·····					
		nple Name/							Π
-		epth (m)	Dry & Hold	S _{CR} Suite]		Comments		
	10-55		Х	Х					
	10-55		X						
3	10-55	0.5	X						
31	10-55	0.75	×						
3	10-55	1.0	x						
3	10-55	1.25	x						
	10-55		x						
	10-55		x						
					10-56				\dashv
3	10-56	0	X						\neg
. L	10-56		X	x					
	10-56		X	~					
	10-56		×						
	10-56	1.0	X						
	10-56	1.25							
	10-56	1.20	X						
			X						
	10-56	1.75	Х						
	10-56	2.0	Х						
14	10-56	2.25	Х						
	10-56	2.5	X						
	10-56		X						
	10-56	3.0	X						
-57	10-57	0	· · · · · · · · · · · · · · · · · · ·		10-57				_
	10-57		X	х					
			Х			<i>t</i>			
	10-57		Х	Х			÷		
	10-57		Х						
	10-57		Х	Х					
	10-57		X						
	10-57		×	Х					
		1.75	×						
	10-57		Х	х	•				
	10-57		х						
65	10-57	2.5	X	X					
(2	10 50		T	<u> </u>	10-58				
	10-58		X						
	10-58		X						
	10-58		×						
	10-58		Х						1
		1.0	Х						
64	10-58	1.25	X	Х					
	10 50	·			10-59				
6) 480	10-59	U	x						
	10-59	0.25	×	Х					
	10-59		x						
74	10-59	0.75	Х						
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10.00		·····	·····	10-60				
	10-60		X	<b>X</b>				· · · ·	
	10-60		X						
Lad	10-60	0.5	. X						1



	Project	Loop 10 AS	SS	Project Manager	Office Perth	
	Olivert			Julie Palich	Job No. 2145167D	
	Client	ECOS		9489 9722	Page No.	******
	Location	Kwinana		jpalich@pb.com.au		<u>_</u>
		· · · · · · · · · · · · · · · · · · ·				
	Sample Name/					
	Depth (m)	Dry & Hold	S _{CR} Suite		Comments	
	10-60 0.75	Х				
	<b>1</b> 10-60 1.0	Х				
N N	<b>45</b> 10-60 1.25	Х				
				10-61		
	10-61 0	Х				
Č	10-61 0.25	×	х			
۲	10-61 0.5	X				
· §	10-61 0.75	x				
	······	<u>1</u> 1		10-62		
8	10-62 0	X		10-02		
	10-62 0.25	x				
	10-62 0.5	x				
	10-62 0.75	1				
5	10.02 0.75	X	X	10.00		
4	10-63 0	T		10-63		
	10-63 0.25	X				
Ň		X	Х			
f.	10-63 0.5	X				
	010-63 0.75	X	×			
	10-63 1.0	x				
	210-63 1.25	X	х			
	10-63 1.5	· X		•		1
ିମ୍	10-63 1.75	X	Х	×		
	· · · · · ·			10-64		
	10-64 0	X			· · · · · · · · · · · · · · · · · · ·	
	10-64 0.25	Х				
	10-64 0.5	X	X			
	10-64 0.75	X				
99	10-64 1.0	х				
- 1 ⁰	10-64 1.25	х				
201	10-64 1.5	х				
		······	······································	10-65	······································	
J07#	10-65 0	X	×		F	7
roz	1,0-65 0.25	x	ĺ			
704	10-65 0.5	x	1			*.
405	10-65 0.75	x				
	10-65 1.0	×				
	10-65 1.25	x		,		
6 1			l_	10-66		
208	10-66 0	Х		10-00		
	10-66 0.25	×	x			
	10-66 0.5	x x				
11	10-66 0.75	x				
12	10-66 1.0	×				
(2,	10-66 1.25	x				1
	10-66 1.5					
1	10-00 1.0	X		10.07		
15	10.67.0	· · · · · · · · · · · · · · · · · · ·	r	10-67		
	10-67 0 10-67 0.25	X				7
		×				
	10-67 0.5	X	Х			. *
	10-67 0.75	X	ļ	177 		
N 14 1 1	·					

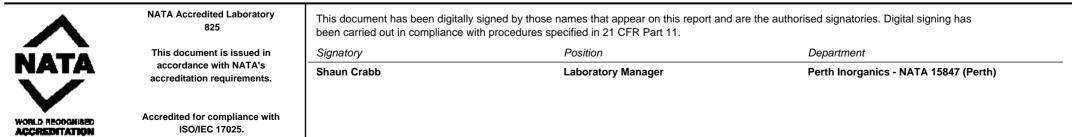
### Chain of Custody



Project	Loop 10 ASS	Project Manager	Office Perth
		Julie Palich	Job No. 2145167D
Client	ECOS	9489 9722	Page No.
Location	Kwinana	jpalich@pb.com.au	-

	Samp	ole Name/			
		pth (m)	Dry & Hold	S _{CR} Suite	Comments
					10-68
	10-68		×		
	10-68		X	х	
		0.5	×		
	10-68		х	х	
		1.0	Х		
		1.25	X	х	
		1.5	x		
		1.75	х	X	
		2.0	х		
	10-68		X	х	
		2.5	х		
		2.75	х	х	
ડા	10-68 :	3.0	Х		
จา					10-69
76	10-69 (	0, .	х	Х	
27 2	10-69 (		×		
32		0.5	X		
		0.75	Х		
- 1		1.0	×		
		1.25	×		
38 39		1.5	×		
		1.75	Х		
		2.0	X		
	10-69 2		X		
		2.5	X	l.	
		2.75	Х		
- <b>k</b> H_	10-69 3	3.0	X		

EXTRA - NO LABEL - JULLE SAYS IGNORE IT. 1214 on 4/11/05 RW.




### ALS Environmental

#### CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	∵ 1 of 8
Contact	S MS JULIE PALICH	Contact	🗄 Shaun Crabb	Work Order	⁻ EP0501756
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	∴ Shaun.Crabb@alsenviro.com		
Telephone	÷ 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	£ 61-8-9209-7600		
Project	2145167D Rebatch EP0501418-167	Quote number	EN/008/05	Date received	2 9 Dec 2005
Order number	🗄 - Not provided -			Date issued	2 19 Dec 2005
C-O-C number	- Not provided -			No. of samples	- Received : 24
Site	🤇 - Not provided -				Analysed : 24

#### ALSE - Excellence in Analytical Testing





#### **Comments**

This report for the ALSE reference EP0501756 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

#### 1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

#### 1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

# Page Number: 3 of 8Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501756



Analytical Results		Clie	ent Sample ID :	10-14	10-14	10-14	10-14	10-14
Analytical Results				0	0.5	1.0	1.5	2.0
	Samp	le Matrix Typ	e / Description :	SOIL	SOIL	SOIL	SOIL	SOIL
		Samp	le Date / Time :	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005	4 Nov 2005
				15:00	15:00	15:00	15:00	15:00
		Laborat	ory Sample ID :					
Analyte	CAS number	LOR	Units	EP0501756-001	EP0501756-002	EP0501756-003	EP0501756-004	EP0501756-005
EG005T: Total Metals by ICP-AES								
Aluminium	7429-90-5	50	mg/kg	19200	10500	21100	24700	24600
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	55	145	48	85	52
Iron	7439-89-6	50	mg/kg	13200	10100	13300	16400	17000
Lead	7439-92-1	5	mg/kg	25	10	20	19	19
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	8	11	8	14	11
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5

# Page Number : 4 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501756



Analytical Results		Clie	ent Sample ID :	10-15 0.25	10-15 0.75	10-15 1,25	10-16 0	10-16 0.5
·	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :		SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	
Analyte	CAS number		Units	EP0501756-006	EP0501756-007	EP0501756-008	EP0501756-009	EP0501756-010
EG005T: Total Metals by ICP-AES		-			1			
Aluminium	7429-90-5	50	mg/kg	35400	39800	27000	25500	31800
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	62	66	54	60	54
Iron	7439-89-6	50	mg/kg	25600	24000	17600	11100	28700
Lead	7439-92-1	5	mg/kg	26	26	18	28	27
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	12	13	11	9	10
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5

# Page Number: 5 of 8Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501756



Analytical Results	Client Sample ID :			10-16 1.0	10-16 1.5	10-16 2.0	10-17 0.25	10-17 0.75
	Samp	Sample Matrix Type / Description : Sample Date / Time :		SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00
	Laboratory Sample ID :							
Analyte	CAS number	LOR	Units	EP0501756-011	EP0501756-012	EP0501756-013	EP0501756-014	EP0501756-015
EG005T: Total Metals by ICP-AES						8		
Aluminium	7429-90-5	50	mg/kg	23700	26600	19900	20300	25000
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	48	43	48	66	33
Iron	7439-89-6	50	mg/kg	15100	18600	15300	11700	15100
Lead	7439-92-1	5	mg/kg	16	20	19	17	24
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	10	15	11	8	8
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5

# Page Number : 6 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501756



Analytical Results Client Sample ID :			10-17 1.25	10-17 1.75	10-18 0	10-18 0.5	10-18 1.0	
	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :		SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	SOIL 4 Nov 2005 15:00	
Analyte	CAS number	LOR	Units	EP0501756-016	EP0501756-017	EP0501756-018	EP0501756-019	EP0501756-020
EG005T: Total Metals by ICP-AES							•	-
Aluminium	7429-90-5	50	mg/kg	25200	25800	26000	20000	29100
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	36	64	80	65	77
Iron	7439-89-6	50	mg/kg	16500	20300	20700	17300	27100
Lead	7439-92-1	5	mg/kg	21	37	37	22	24
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	<2	<2
Nickel	7440-02-0	2	mg/kg	12	15	10	10	14
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5	<5

# Page Number : 7 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501756



Analytical Results		Clie	ent Sample ID :	10-18 1.5	10-13 0	10-13 0.5	10-13 1.0
	Samp	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :			SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00	SOIL 28 Nov 2005 15:00
Analyte	CAS number	LOR	Units	EP0501756-021	EP0501756-022	EP0501756-023	EP0501756-024
EG005T: Total Metals by ICP-AES						•	
Aluminium	7429-90-5	50	mg/kg	21400	9350	16200	19700
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	57	49	59	41
Iron	7439-89-6	50	mg/kg	24600	8020	12400	15600
Lead	7439-92-1	5	mg/kg	17	8	14	19
Molybdenum	7439-98-7	2	mg/kg	<2	<2	<2	2
Nickel	7440-02-0	2	mg/kg	13	5	7	18
Selenium	7782-49-2	5	mg/kg	<5	<5	<5	<5

Page Number: 8 of 8Client: PARSONS BRINCKERHOFF AUST P/LWork Order: EP0501756

## Surrogate Control Limits

1 No surrogates present on this report.

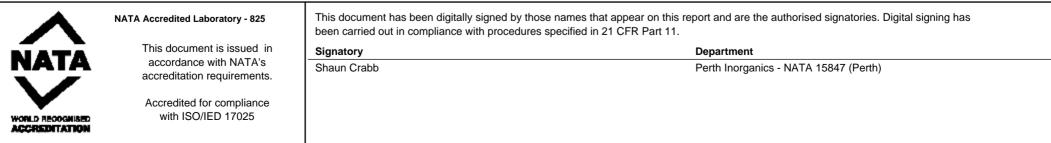




## ALS Environmental

## QUALITY CONTROL REPORT

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	: 1 of 6
Contact Address	: MS JULIE PALICH P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Contact Address	: Shaun Crabb : 10 Hod Way Malaga WA Australia 6090	Work order	: EP0501756
				Amendment No.	:
Project Order number C-O-C number Site	<ul> <li>2145167D Rebatch EP0501418-167</li> <li>- Not provided -</li> <li>- Not provided -</li> <li>- Not provided -</li> </ul>	Quote number	: EN/008/05	Date received Date issued	: 9 Dec 2005 : 19 Dec 2005
E-mail Telephone Facsimile	: jpalich@pb.com.au : 08 9489 9700 : 08 9380 4060	E-mail Telephone Facsimile	<ul> <li>Shaun.Crabb@alsenviro.com</li> <li>61-8-9209-7655</li> <li>61-8-9209-7600</li> </ul>	No. of samples Received Analysed	: 24 : 24


This final report for the ALSE work order reference EP0501756 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

#### ALSE - Excellence in Analytical Testing



Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501756	Page Number		: 2 of 6	(ALS)
Project	:	2145167D Rebatch EP0501418-167	ALS Quote Reference	:	EN/008/05	Issue Date	:	: 19 Dec 2005	ALS Environmental

## **Quality Control Report** - Laboratory Duplicates (DUP)

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

#### Matrix Type: SOIL

Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EG005T: Total Metals by	ICP-AES					
EG005T: Total Metals by	/ ICP-AES - ( QC Lot: 151239 )			mg/kg	mg/kg	%
EP0501756-001	10-14 - 0	Aluminium	50 mg/kg	19200	21200	9.7
		Arsenic	5 mg/kg	<5	<5	0.0
		Cadmium	1 mg/kg	<1	<1	0.0
		Chromium	2 mg/kg	55	56	2.7
		Iron	50 mg/kg	13200	14400	8.9
		Lead	5 mg/kg	25	26	7.4
		Molybdenum	2 mg/kg	<2	<2	0.0
		Nickel	2 mg/kg	8	8	0.0
		Selenium	5 mg/kg	<5	<5	0.0
EP0501756-011	10-16 - 1.0	Aluminium	50 mg/kg	23700	28200	17.5
		Arsenic	5 mg/kg	<5	<5	0.0
		Cadmium	1 mg/kg	<1	<1	0.0
		Chromium	2 mg/kg	48	57	16.5
		Iron	50 mg/kg	15100	18200	18.6
		Lead	5 mg/kg	16	19	15.8
		Molybdenum	2 mg/kg	<2	<2	0.0
		Nickel	2 mg/kg	10	11	17.2
		Selenium	5 mg/kg	<5	<5	0.0
EG005T: Total Metals by	/ ICP-AES - ( QC Lot: 151240 )			mg/kg	mg/kg	%
EP0501756-021	10-18 - 1.5	Aluminium	50 mg/kg	21400	21700	1.4
		Arsenic	5 mg/kg	<5	<5	0.0
		Cadmium	1 mg/kg	<1	<1	0.0
		Chromium	2 mg/kg	57	58	0.0
		Iron	50 mg/kg	24600	25200	2.0
		Lead	5 mg/kg	17	17	0.0



Laboratory Duplicates (DUP) Report

ALS
ALS Environmental

Client Project	:		S BRINCKERHOFF AUST P/L Rebatch EP0501418-167	Work Order ALS Quote Reference	: EP0501756 : EN/008/05		Page Number : 3 of Issue Date : 19 I		(ALS) Ls Environmental		
Matrix Typ	Matrix Type: SOIL Laboratory Duplicates (DUP) Report										
Laborate	ory Sam	nple ID	Client Sample ID	Analyte name		LOR	Original Result	Duplicate Result	RPD		
EG005T: Total Metals by ICP-AES - continued											
EG005T:	: Total	Metals by ICI	P-AES - ( QC Lot: 151240 ) - continued				mg/kg	mg/kg	%		
EP0501	1756-02	21	10-18 - 1.5	Molybdenum		2 mg/kg	<2	<2	0.0		
				Nickel		2 mg/kg	13	14	0.0		
				Selenium		5 mg/kg	<5	<5	0.0		

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501756	Page Number	:	4 of 6	(ALS)
Project	:	2145167D Rebatch EP0501418-167	ALS Quote Reference	:	EN/008/05	Issue Date	:	19 Dec 2005	ALS Environmen

## Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

#### Matrix Type: SOIL

#### Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method	Actual	Posults	Pacay	Recovery Limits		
		blank result	Spike concentration	Spike Recovery		covery Limits		
Analyte name	LOR			LCS	Low	High		
G005T: Total Metals by ICP-AES								
EG005T: Total Metals by ICP-AES - ( QC Lot: 151239 )		mg/kg	mg/kg	%	%	%		
Aluminium	50 mg/kg	<50						
Arsenic	5 mg/kg		13.75	105	70	130		
	5 mg/kg	<5						
Cadmium	1 mg/kg		2.82	100	70	130		
	1 mg/kg	<1						
Chromium	2 mg/kg		61.6	105	70	130		
	2 mg/kg	<2						
Iron	50 mg/kg	<50						
Lead	5 mg/kg		55.5	104	70	130		
	5 mg/kg	<5						
Molybdenum	2 mg/kg	<2						
Nickel	2 mg/kg		55.1	112	70	130		
	2 mg/kg	<2						
Selenium	5 mg/kg	<5						
EG005T: Total Metals by ICP-AES - ( QC Lot: 151240 )		mg/kg	mg/kg	%	%	%		
Aluminium	50 mg/kg	<50						
Arsenic	5 mg/kg		13.75	95.9	70	130		
	5 mg/kg	<5						
Cadmium	1 mg/kg		2.82	92.5	70	130		
	1 mg/kg	<1						
Chromium	2 mg/kg		61.6	94.5	70	130		
	2 mg/kg	<2						
Iron	50 mg/kg	<50						
Lead	5 mg/kg		55.5	96.2	70	130		
	5 mg/kg	<5						
Molybdenum	2 mg/kg	<2						



(ALS)
LS Environmental

Client         :         PARSONS BRINCKERHOFF           Project         :         2145167D Rebatch EP0501418-		k Order Quote Reference	: EP0501756 : EN/008/05		Page Number : 5 of Issue Date : 19 D		(ALS) <u>S Environmental</u>			
Atrix Type: SOIL Method Blank (MB) and Laboratory Control Samples (LCS) Report										
			Method blank result	Actual Spike concentration	Results Spike Recovery	Recovery Limits Dynamic Recovery Limits				
Analyte name		LOR			LCS	Low	High			
EG005T: Total Metals by ICP-AES - continued										
EG005T: Total Metals by ICP-AES - ( QC Lot: 151	240) - continued		mg/kg	mg/kg	%	%	%			
Nickel	2	2 mg/kg		55.1	93.6	70	130			
	2	2 mg/kg	<2							
Selenium	5	i mg/kg	<5							

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501756	Page Number	:	6 of 6	(ALS)
Project	:	2145167D Rebatch EP0501418-167	ALS Quote Reference	:	EN/008/05	Issue Date	:	19 Dec 2005	ALS Environmental

## **Quality Control Report** - Matrix Spikes (MS)

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference. * Indicates failed QC

#### Matrix Type: SOIL

Matrix Type: SOIL							Ма	atrix Spike (MS) Repo
				[	Actual	Results	Recov	ery Limits
					Sample Result	Spike Recovery		Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
EG005T: Total Metals by	ICP-AES					i		i
EG005T: Total Metals b	oy ICP-AES - ( QC Lot: 151239 )			mg/kg	mg/kg	%	%	%
Aluminium	EP0501756-002	10-14 - 0.5	50 mg/kg	50	10500	* Not Determined	70	130
Arsenic			5 mg/kg	50	<5	99.1	70	130
Cadmium			1 mg/kg	50	1	98.1	70	130
Chromium			2 mg/kg	50	145	114	70	130
Iron			50 mg/kg	50	10100	* Not Determined	70	130
Lead			5 mg/kg	50	10	90.6	70	130
Molybdenum			2 mg/kg	10	<2	100	70	130
Nickel			2 mg/kg	50	11	84.4	70	130
Selenium			5 mg/kg	10	<5	94.0	70	130
EG005T: Total Metals b	oy ICP-AES - ( QC Lot: 151240 )			mg/kg	mg/kg	%	%	%
Aluminium	EP0501756-022	10-13 - 0	50 mg/kg	50	9350	* Not Determined	70	130
Arsenic			5 mg/kg	50	<5	112	70	130
Cadmium			1 mg/kg	50	<1	112	70	130
Chromium			2 mg/kg	50	49	102	70	130
Iron			50 mg/kg	50	8020	* Not Determined	70	130
Lead			5 mg/kg	50	8	112	70	130
Molybdenum			2 mg/kg	10	<2	85.0	70	130
Nickel			2 mg/kg	50	5	112	70	130
Selenium			5 mg/kg	10	<5	130	70	130



### **Rebecca Walther**

From:	Palich, Julie [JPalich@pb.com.au]

Sent: Friday, 9 December 2005 1:34 PM

To: Rebecca Walther

Subject: additional analysis for 2145167D

#### Rebecca -

1

Could I please get the following samples from batch 0501418 analyses for metals (Fe, Al, As, Cd, Cr, Pb, Mo, Ni, Se):

$ \begin{array}{c} (4) & 10-14 & 1.5, \\ (3) & 10-14 & 2.0, \\ (4) & 10-15 & 0.25, \\ (4) & 10-15 & 0.75, \\ (5) & 10-15 & 1.25, \\ (6) & 10-16 & 0, \\ (7) & 10-16 & 0.5, \\ (1) & 10-16 & 1.0, \\ (1) & 10-16 & 1.0, \\ (1) & 10-16 & 1.5, \\ (2) & 10-16 & 2.0, \\ (3) & 10-16 & 2.0, \\ (4) & 10-16 & 1.5, \\ (3) & 10-16 & 2.0, \\ (4) & 10-16 & 1.5, \\ (3) & 10-17 & 0.25, \\ (4) & 10-17 & 1.25, \\ (4) & 10-17 & 1.25, \\ (4) & 10-17 & 1.75, \\ (4) & 10-18 & 0, \\ (4) & 10-18 & 0, \\ (5) & (6) & 10-18 & 1.5, \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1.5. \\ (6) & 10-18 & 1$	() 10-14 (2) 10-14 (3) 10-14	0.5, 1.0,
(1) 10-16 0, (1) 10-16 0.5, (1) 10-16 1.0, (2) 10-16 1.5, (3) 10-16 2.0, (4) 10-17 0.25, (5) 10-17 0.75, (6) 10-17 1.25, (1) 10-17 1.75, (1) 10-18 0, (1) 10-18 1.0, (2) 10-18 1.5.	(S) 10-14 (L) 10-15	2.0, 0.25,
(2)10-16 1.5, (3)10-16 2.0, (4)10-17 0.25, (5)10-17 0.75, (4)10-17 1.25, (1)10-17 1.75, (1)10-18 0, (1)10-18 0.5, (2)10-18 1.0, (2)10-18 1.5.	(f) 10-16 (b) 10-16	0, 0.5,
(10.10-17 1.25, (13.10-17 1.75, (13.10-18 0, (10.18 0.5, (20.10-18 1.0, (20.10-18 1.5,	(2)10-16 (3)10-16 (1)10-17	1.5, 2.0, 0.25,
(2)10-18 1.0, (2)10-18 1.5.	(1)10-17 (1)10-17 (1)10-18	1.25, 1.75, 0,
And from batch	@10-18 @10-18	1.0, 1.5.

المار And from batch 0501<del>761</del> (same analysis as above) (2) 10-13 0, (3) 10-13 0.5, (34) 10-13 1.0.

Please register all as one batch. Thanks.

Julie

### Julie Palich

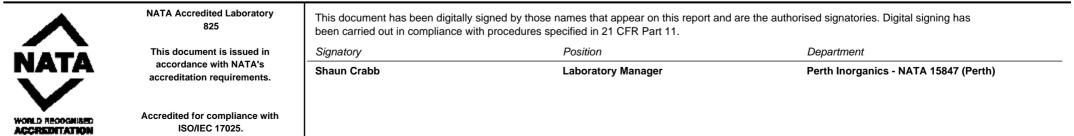
Environmental Geoscientist/Project Manager Parsons Brinckerhoff Australia Pty Limited 1 Alvan Street PO Box 1232 Subiaco WA 6008 Perth AUSTRALIA tel: +61(0)8 9489 9700 direct: +61(0)8 9489 9722 fax: +61(0)8 9380 4060 mob: +(61) 0417 54 1367 email: JPalich@pb.com.au www.pb.com.au and www.pbworld.com

Everyone profits by delivering client outcomes on time



ć

Telephone : 61-8-9209-7655




## ALS Environmental

## CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	ALS Environmental Perth	Page	: 1 of 8
Contact	S MS JULIE PALICH	Contact	ິ Shaun Crabb	Work Order	⁻ EP0501827
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	Shaun.Crabb@alsenviro.com		
Telephone	÷ 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	£ 61-8-9209-7600		
Project	2145167D	Quote number	£ EN/008/05	Date received	20 Dec 2005
Order number	🗄 - Not provided -			Date issued	∴ 9 Jan 2006
C-O-C number	Rebatch EP0501756			No. of samples	- Received : 24
Site	🤇 - Not provided -				Analysed : 24







### **Comments**

This report for the ALSE reference EP0501827 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

#### 1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

#### 1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

# Page Number : 3 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501827



Analytical Results		Clie	ent Sample ID :	10-14 0.0	10-14 0.5	10-14 1.0	10-14 1.5	10-14 2.0
	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :			WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00
Analyte	CAS number	LOR	Units	EP0501827-001	EP0501827-002	EP0501827-003	EP0501827-004	EP0501827-005
EG005C: Leachable Metals by ICPAE	S							
Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EG050G: Hexvalent Chromium by Dis	screte Analyser		·				•	
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EN60: Bottle Leaching Procedure			•				•	
Final pH		0.1	pH Unit	7.7	7.4	7.7	7.6	7.8

# Page Number : 4 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501827



Analytical Results		Clie	ent Sample ID :	10-15 0.25	10-15 0.75	10-15 1.25	10-16 0.0	10-16 0.5
	Samp	Samp	e / Description : ble Date / Time : tory Sample ID :	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00
Analyte	CAS number	LOR	Units	EP0501827-006	EP0501827-007	EP0501827-008	EP0501827-009	EP0501827-010
EG005C: Leachable Metals by ICPAE	S				•	•		
Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EG050G: Hexvalent Chromium by Dis	screte Analyser					•		
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EN60: Bottle Leaching Procedure						•		
Final pH		0.1	pH Unit	7.3	7.4	7.5	7.2	6.9

# Page Number : 5 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501827



Analytical Results		Clie	ent Sample ID :	10-16 1.0	10-16 1.5	10-16 2.0	10-17 0.25	10-17 0.75
	Samp	Samp	e / Description : ble Date / Time : tory Sample ID :	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 4 Jan 2006 12:00	WATER LEACHATE 5 Jan 2006 16:07
Analyte	CAS number	LOR	Units	EP0501827-011	EP0501827-012	EP0501827-013	EP0501827-014	EP0501827-015
EG005C: Leachable Metals by ICPAE	S					•		
Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/L	<0.1	<0.1	<0.1	0.3	<0.1
EG050G: Hexvalent Chromium by Di	screte Analyser							•
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EN60: Bottle Leaching Procedure			· ·		-	•		•
Final pH		0.1	pH Unit	7.0	7.2	7.3	7.4	6.7

# Page Number : 6 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501827



Analytical Results		Clie	ent Sample ID :	10-17 1.25	10-17 1.75	10-18 0.0	10-18 0.5	10-18 1.0
	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :			WATER LEACHATE 5 Jan 2006 16:07	WATER LEACHATE 5 Jan 2006 16:07	WATER LEACHATE 5 Jan 2006 16:07	WATER LEACHATE 5 Jan 2006 16:07	WATER LEACHATE 5 Jan 2006 16:07
Analyte	CAS number	LOR	Units	EP0501827-016	EP0501827-017	EP0501827-018	EP0501827-019	EP0501827-020
EG005C: Leachable Metals by ICPAE	s				•			
Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/L	<0.1	<0.1	<0.1	<0.1	<0.1
EG050G: Hexvalent Chromium by Dis	crete Analyser		·					
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01	<0.01
EN60: Bottle Leaching Procedure			<b>.</b>			•	•	·
Final pH		0.1	pH Unit	6.8	7.1	7.4	7.6	7.7

# Page Number : 7 of 8 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0501827



Analytical Results		Clie	ent Sample ID :	10-18 1.5	10-13 0.0	10-13 0.5	10-13
	Sample Matrix Type / Description : Sample Date / Time : Laboratory Sample ID :			1.5 WATER LEACHATE 5 Jan 2006 16:07	WATER LEACHATE 5 Jan 2006 16:07	0.3 WATER LEACHATE 5 Jan 2006 16:07	<b>1.0</b> WATER LEACHATE 5 Jan 2006 16:07
Analyte	CAS number	LOR	Units	EP0501827-021	EP0501827-022	EP0501827-023	EP0501827-024
EG005C: Leachable Metals by ICPAE	S						
Lead	7439-92-1	0.1	mg/L	<0.1	<0.1	<0.1	<0.1
Nickel	7440-02-0	0.1	mg/L	<0.1	<0.1	<0.1	<0.1
EG050G: Hexvalent Chromium by Dis	screte Analyser		·				•
Hexavalent Chromium	18540-29-9	0.01	mg/L	<0.01	<0.01	<0.01	<0.01
EN60: Bottle Leaching Procedure			· ·			•	•
Final pH		0.1	pH Unit	7.9	7.9	8.4	8.0

 Page Number
 : 8 of 8

 Client
 : PARSONS BRINCKERHOFF AUST P/L

 Work Order
 : EP0501827

## Surrogate Control Limits

1 No surrogates present on this report.

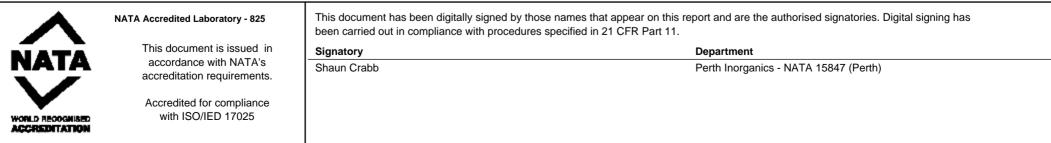




## ALS Environmental

## QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 4
Contact Address	:	MS JULIE PALICH P O BOX 1232 SUBIACO	Contact Address	: Shaun Crabb : 10 Hod Way Malaga	Work order		EP0501827
	-	WA AUSTRALIA 6904		WA Australia 6090		-	
					Amendment No.	:	
Project	:	2145167D	Quote number	: EN/008/05	Date received	:	20 Dec 2005
Order number	:	- Not provided -			Date issued	:	9 Jan 2006
C-O-C number	:	Rebatch EP0501756					
Site	:	- Not provided -					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	24
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	24


This final report for the ALSE work order reference EP0501827 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

#### ALSE - Excellence in Analytical Testing



Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501827	Page Number	:	2 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	9 Jan 2006	ALS Environmental

### **Quality Control Report - Laboratory Duplicates (DUP)**

The quality control term **Laboratory Duplicate** refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

#### Matrix Type: WATER

Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EG005C: Leachable Meta	Is by ICPAES					
EG005C: Leachable Met	tals by ICPAES - ( QC Lot: 157081 )			mg/L	mg/L	%
EP0501827-001	10-14 - 0.0	Lead	0.1 mg/L	<0.1	<0.1	0.0
		Nickel	0.1 mg/L	<0.1	<0.1	0.0
EP0501827-011	10-16 - 1.0	Lead	0.1 mg/L	<0.1	<0.1	0.0
		Nickel	0.1 mg/L	<0.1	<0.1	0.0
EG005C: Leachable Me	tals by ICPAES - ( QC Lot: 157252 )		mg/L	mg/L	%	
EP0501827-015	10-17 - 0.75	Lead	0.1 mg/L	<0.1	<0.1	0.0
		Nickel	0.1 mg/L	<0.1	<0.1	0.0
EP0501852-001	Anonymous	Lead	0.1 mg/L	<0.1	<0.1	0.0
		Nickel	0.1 mg/L	<0.1	<0.1	0.0
EG050G: Hexvalent Chro	mium by Discrete Analyser			•	•	
EG050G: Hexvalent Chr	omium by Discrete Analyser - ( QC Lot: 156964 )			mg/L	mg/L	%
EP0501827-001	10-14 - 0.0	Hexavalent Chromium	0.01 mg/L	<0.01	<0.01	0.0
EP0501827-010	10-16 - 0.5	Hexavalent Chromium	0.01 mg/L	<0.01	<0.01	0.0
EG050G: Hexvalent Chr	omium by Discrete Analyser - ( QC Lot: 157277 )	·	·	mg/L	mg/L	%
EP0501827-015	10-17 - 0.75	Hexavalent Chromium	0.01 mg/L	<0.01	<0.01	0.0
EP0501827-024	10-13 - 1.0	Hexavalent Chromium	0.01 mg/L	<0.01	<0.01	0.0



Laboratory Duplicates (DUP) Report

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501827	Page Number	: 3 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	: 9 Jan 2006	ALS Environmental

## Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

#### Matrix Type: WATER

#### Method Blank (MB) and Laboratory Control Samples (LCS) Report

			Actual	Results	Recove	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic Re	ecovery Limits
Analyte name	LOR			LCS	Low	High
EG005C: Leachable Metals by ICPAES		-				
EG005C: Leachable Metals by ICPAES - ( QC Lot: 157081 )		mg/L	mg/L	%	%	%
Lead	0.1 mg/L		1.0	95.3	70	130
	0.1 mg/L	<0.1				
Nickel	0.1 mg/L		1.0	97.1	70	130
	0.1 mg/L	<0.1				
EG005C: Leachable Metals by ICPAES - ( QC Lot: 157252 )		mg/L	mg/L	%	%	%
Lead	0.1 mg/L		1.0	103	70	130
	0.1 mg/L	<0.1				
Nickel	0.1 mg/L		1.0	97.3	70	130
	0.1 mg/L	<0.1				
EG050G: Hexvalent Chromium by Discrete Analyser		-			-	
EG050G: Hexvalent Chromium by Discrete Analyser - ( QC Lot: 156964 )		mg/L	mg/L	%	%	%
Hexavalent Chromium	0.01 mg/L		0.50	96.1	70	130
	0.01 mg/L	<0.01				
EG050G: Hexvalent Chromium by Discrete Analyser - ( QC Lot: 157277 )		mg/L	mg/L	%	%	%
Hexavalent Chromium	0.01 mg/L		0.50	93.6	70	130
	0.01 mg/L	<0.01				

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0501827	Page Number	:	4 of 4	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	:	9 Jan 2006	ALS Environmental

## Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference.* * Indicates failed QC

#### Matrix Type: WATER

					Actual	Results	Recove	ery Limits	
					Sample Result	Spike Recovery	Statio	Limits	
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High	
G005C: Leachable Metals b	DY ICPAES								
EG005C: Leachable Metals	by ICPAES - ( QC Lot: 1570	81)		mg/L	mg/L	%	%	%	
Lead	EP0501827-002	10-14 - 0.5	0.1 mg/L	1.0	<0.1	89.5	70	130	
Nickel			0.1 mg/L	1.0	<0.1	91.8	70	130	
EG005C: Leachable Metals	by ICPAES - ( QC Lot: 1572	52)		mg/L	mg/L	%	%	%	
Lead	EP0501827-016	10-17 - 1.25	0.1 mg/L	1.0	<0.1	103	70	130	
Nickel			0.1 mg/L	1.0	<0.1	98.8	70	130	
EG050G: Hexvalent Chromiu	Im by Discrete Analyser								
EG050G: Hexvalent Chromi	ium by Discrete Analyser -	( QC Lot: 156964 )		mg/L	mg/L	%	%	%	
Hexavalent Chromium	EP0501827-002	10-14 - 0.5	0.01 mg/L	0.50	<0.01	89.9	70	130	
EG050G: Hexvalent Chromi	ium by Discrete Analyser -	( QC Lot: 157277 )		mg/L	mg/L	%	%	%	
Hexavalent Chromium	EP0501827-016	10-17 - 1.25	0.01 mg/L	0.50	<0.01	90.4	70	130	

Report version : QC_NA 3.02



Matrix Spike (MS) Report

### Shaun Crabb

From: Sent: To: Subject:

4

Palich, Julie [JPalich@pb.com.au] Tuesday, 20 December 2005 8:26 AM Jon Houlahan; Shaun Crabb RE: Deliverables for ALSE Workorder : EP0501756

Jon/Shaun

Could I please get all samples from batch EP0501756 analysed for ASLP for Cr(VI), Ni and Pb?

Thanks.

Julie

lebatch samples 1-24 Project 10 2145167D Sampled 4/11/05, 22-24 Sampled 25/11/05 1-21

Email Disclaimer: This document and any attachments ("this message") are confidential and may contain legally privileged information and/or copyright material.

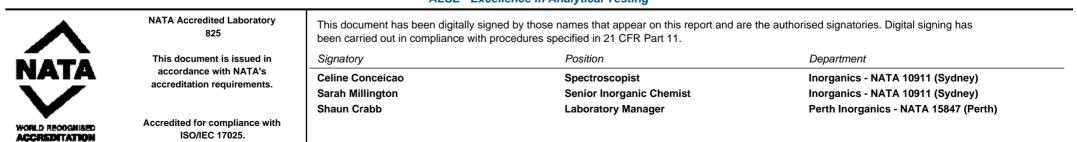
This message must not be distributed and the information contained in it must not be disseminated, without the authority of the Parsons Brinckerhoff Group ("PB"). This message must not be altered other than by PB.

The information contained in this message is intended for the use of the authorised recipient only. If you are not the authorised recipient of this message you must not read, copy, store or distribute this message, or disseminate or act in reliance upon the information contained in it. If you have received this message in error, or you are not an authorised recipient, please either return e-mail to sender or telephone PB immediately on +61 2 9272 5100, and delete this message from your email system, and destroy any printed copies.

This email has been scanned through the ALS Domain



Sample 10 24.




## ALS Environmental

## CERTIFICATE OF ANALYSIS

Client	: PARSONS BRINCKERHOFF AUST P/L	Laboratory	2 ALS Environmental Perth	Page	ິ 1 of 5
Contact	: MS JULIE PALICH	Contact	: Shaun Crabb	Work Order	⁻ EP0600044
Address	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	ິ 10 Hod Way Malaga WA Australia 6090		
E-mail	∵ jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com		
Telephone	² 08 9489 9700	Telephone	£ 61-8-9209-7655		
Facsimile	÷ 08 9380 4060	Facsimile	É 61-8-9209-7600		
Project	2145167D	Quote number	É EN/008/05	Date received	∑ 10 Jan 2006
Order number	∠ - Not provided -			Date issued	∑ 13 Jan 2006
C-O-C number	200468			No. of samples	- Received : <b>7</b>
Site	ິ - Not provided -				Analysed : 7







### **Comments**

This report for the ALSE reference EP0600044 supersedes any previous reports with this reference. Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

#### 1 Analytical results for samples submitted

When moisture determination has been performed, results are reported on a dry weight basis. When a reported 'less than' result is higher than the LOR, this may be due to primary sample extracts/digestion dilution and/or insuffient sample amount for analysis. Surrogate Recovery Limits are static and based on USEPA SW846 or ALS-QWI/EN38 (in the absence of specified USEPA limits). Where LOR of reported result differ from standard LOR, this may be due to high moisture, reduced sample amount or matrix interference. When date(s) and/or time(s) are shown bracketed, these have been assumed by the laboratory for process purposes. Abbreviations: CAS number = Chemical Abstract Services number, LOR = Limit of Reporting. * Indicates failed Surrogate Recoveries.

#### 1 Surrogate control limits

The analytical procedures used by ALS Environmental are based on established internationally-recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house procedure are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported herein. Reference methods from which ALSE methods are based are provided in parenthesis.

# Page Number : 3 of 5 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0600044



		Clic	ent Sample ID :	0.01	D74	870	PZ3	D74
Analytical Results	0			QC1 WATER	PZ1 WATER	PZ2 WATER	WATER	PZ4 WATER
	Sampi	21	e / Description : le Date / Time :	10 Jan 2006	10 Jan 2006	10 Jan 2006	10 Jan 2006	10 Jan 2006
		Samp	Date / Time .	12:00	12:00	12:00	12:00	12:00
		Laborat	ory Sample ID :	12.00	12.00	12.00	12.00	12.00
Analyte	CAS number	LOR	Units	EP0600044-001	EP0600044-002	EP0600044-003	EP0600044-004	EP0600044-005
EA005P: pH by PC Titrator							ł	ł
pH Value	12408-02-5	0.01	pH Unit	4.01	3.63	4.40	4.25	3.97
EA010P: Conductivity by PC Titrator			· · ·					I
Electrical Conductivity @ 25°C		1	µS/cm	158	1180	500	487	153
EA015: Total Dissolved Solids			· · ·					L
Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	300	1620	518	550	250
ED037P: Alkalinity by PC Titrator			5		I		I	1
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1	<1	<1	<1
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1	<1	<1	<1
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	<1	<1	<1	<1	<1
Total Alkalinity as CaCO3		1	mg/L	<1	<1	<1	<1	<1
ED038A: Acidity			h					
Acidity as CaCO3		1	mg/L	64	505	196	92	56
ED040F: Dissolved Major Anions								
Sulphate as SO4 2-	14808-79-8	1	mg/L	3	36	27	24	3
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1.0	mg/L	26.1	320	96.4	101	38.3
EG005T: Total Metals by ICP-AES								
Aluminium	7429-90-5	0.10	mg/L	0.88	4.12	8.22	59.2	1.56
Iron	7439-89-6	0.05	mg/L	3.45	8.17	5.48	41.5	5.26
EG020F: Dissolved Metals by ICP-MS	1		<b>i</b>				•	•
Aluminium	7429-90-5	0.01	mg/L	0.78	2.80	1.00	1.54	0.82
Arsenic	7440-38-2	0.001	mg/L	<0.001	0.001	<0.001	<0.001	<0.001
Cadmium	7440-43-9	0.0001	mg/L	0.0001	0.0001	0.0009	0.0014	0.0001
Chromium	7440-47-3	0.001	mg/L	0.001	0.003	0.001	0.001	0.001
Manganese	7439-96-5	0.001	mg/L	0.016	0.027	0.639	0.577	0.020
Nickel	7440-02-0	0.001	mg/L	0.003	0.008	0.020	0.012	0.006
Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010	<0.010	<0.010	<0.010
Zinc	7440-66-6	0.005	mg/L	0.038	0.053	0.087	0.096	0.052
Iron	7439-89-6	0.05	mg/L	4.14	4.42	0.16	0.14	3.99
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.010	mg/L	0.018	<0.010	0.328	0.107	0.140
EK085M: Sulphide as S2-								
Sulphide as S2-	18496-25-8	0.1	mg/L	<0.1	<0.1	0.2	<0.1	<0.1

# Page Number : 4 of 5 Client : PARSONS BRINCKERHOFF AUST P/L Work Order : EP0600044



Analytical Deculta		Clie	ent Sample ID :	PZ5	PZ6			
Analytical Results	Sampl		e / Description :	WATER	WATER			
		Samp	le Date / Time :	10 Jan 2006	10 Jan 2006			
		1 - 1		12:00	12:00			
			ory Sample ID :	FR0000044.000	<b>FR</b> 0000044.007			
Analyte	CAS number	LOR	Units	EP0600044-006	EP0600044-007			
EA005P: pH by PC Titrator								
pH Value	12408-02-5	0.01	pH Unit	6.65	6.19			
EA010P: Conductivity by PC Titrator								
Electrical Conductivity @ 25°C		1	µS/cm	455	322			
EA015: Total Dissolved Solids								
Total Dissolved Solids @180°C	GIS-210-010	1	mg/L	635	615			
ED037P: Alkalinity by PC Titrator							·	
Hydroxide Alkalinity as CaCO3	DMO-210-001	1	mg/L	<1	<1			
Carbonate Alkalinity as CaCO3	3812-32-6	1	mg/L	<1	<1			
Bicarbonate Alkalinity as CaCO3	71-52-3	1	mg/L	159	50			
Total Alkalinity as CaCO3		1	mg/L	159	50			
ED038A: Acidity						·		
Acidity as CaCO3		1	mg/L	76	24			
ED040F: Dissolved Major Anions						-		
Sulphate as SO4 2-	14808-79-8	1	mg/L	40	<10			
ED045G: Chloride Discrete analyser								
Chloride	16887-00-6	1.0	mg/L	43.2	68.8			
EG005T: Total Metals by ICP-AES					•	1		
Aluminium	7429-90-5	0.10	mg/L	633	99.0			
Iron	7439-89-6	0.05	mg/L	326	77.4			
EG020F: Dissolved Metals by ICP-MS					•	1	1	•
Aluminium	7429-90-5	0.01	mg/L	0.02	0.35			
Arsenic	7440-38-2	0.001	mg/L	0.007	0.001			
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001			
Chromium	7440-47-3	0.001	mg/L	<0.001	0.002			
Manganese	7439-96-5	0.001	mg/L	0.586	0.164			
Nickel	7440-02-0	0.001	mg/L	0.005	0.008			
Selenium	7782-49-2	0.010	mg/L	<0.010	<0.010			
Zinc	7440-66-6	0.005	mg/L	0.008	0.009			
Iron	7439-89-6	0.05	mg/L	<0.05	5.13			
EK055G: Ammonia as N by Discrete A	Analyser							
Ammonia as N	7664-41-7	0.010	mg/L	0.158	0.107			
EK085M: Sulphide as S2-			-			·	·	•
Sulphide as S2-	18496-25-8	0.1	mg/L	1.2	0.2			
					1	1	1	1

 Page Number
 : 5 of 5

 Client
 : PARSONS BRINCKERHOFF AUST P/L

 Work Order
 : EP0600044

## Surrogate Control Limits

1 No surrogates present on this report.





## ALS Environmental

## QUALITY CONTROL REPORT

Client	:	PARSONS BRINCKERHOFF AUST P/L	Laboratory	: ALS Environmental Perth	Page	:	1 of 8
Contact	:	MS JULIE PALICH	Contact	: Shaun Crabb			
Address	:	P O BOX 1232 SUBIACO WA AUSTRALIA 6904	Address	: 10 Hod Way Malaga WA Australia 6090	Work order	:	EP0600044
					Amendment No.	:	
Project	:	2145167D	Quote number	: EN/008/05	Date received	:	10 Jan 2006
Order number	:	- Not provided -			Date issued	:	13 Jan 2006
C-O-C number	:	200468					
Site	:	- Not provided -					
E-mail	:	jpalich@pb.com.au	E-mail	: Shaun.Crabb@alsenviro.com	No. of samples		
Telephone	:	08 9489 9700	Telephone	: 61-8-9209-7655	Received	:	7
Facsimile	:	08 9380 4060	Facsimile	: 61-8-9209-7600	Analysed	:	7

This final report for the ALSE work order reference EP0600044 supersedes any previous reports with this reference.

Results apply to the samples as submitted. All pages of this report have been checked and approved for release.

This report contains the following information:

- 1 Laboratory Duplicates (DUP); Relative Percentage Difference (RPD) and Acceptance Limits
- 1 Method Blank (MB) and Laboratory Control Samples (LCS); Recovery and Acceptance Limits
- 1 Matrix Spikes (MS); Recovery and Acceptance Limits

### ALSE - Excellence in Analytical Testing



NATA Accredited Laboratory - 825

This document is issued in accordance with NATA's accreditation requirements.

Accredited for compliance with ISO/IED 17025

This document has been digitally signed by those names that appear on this been carried out in compliance with procedures specified in 21 CFR Part 11.	eport and are the authorised signatories. Digital signing has
Signatory	Department
Celine Conceicao	Inorganics - NATA 10911 (Sydney)

enginationy	
Celine Conceicao	
Sarah Millington	
Shaun Crabb	

Inorganics - NATA 10911 (Sydney) Inorganics - NATA 10911 (Sydney) Perth Inorganics - NATA 15847 (Perth)

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0600044	Page Number : 2 of 8	(ALS)
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date : 13 Jan 2006	ALS Environmental

## **Quality Control Report - Laboratory Duplicates (DUP)**

The quality control term Laboratory Duplicate refers to an intralaboratory split sample randomly selected from the sample batch. Laboratory duplicates provide information on method precision and sample heterogeneity. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. Abbreviations: LOR = Limit of Reporting, RPD = Relative Percent Difference. * Indicates failed QC. The permitted ranges for the RPD of Laboratory Duplicates (relative percent deviation) are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting:- Result < 10 times LOR, no limit - Result between 10 and 20 times LOR, 0% - 50% - Result > 20 times LOR, 0% - 20%

Matrix Type: WATER					Laboratory	y Duplicates (DUP) Repo
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
EA005P: pH by PC Titrator						
EA005P: pH by PC Titrato	r - ( QC Lot: 158784 )			pH Unit	pH Unit	%
EP0600044-001	QC1	pH Value	0.01 pH Unit	4.01	3.96	1.2
EP0600045-005	Anonymous	pH Value	0.01 pH Unit	5.17	5.13	0.7
EA010P: Conductivity by P	C Titrator			•	•	
EA010P: Conductivity by	PC Titrator - ( QC Lot: 158785 )			μS/cm	μS/cm	%
EP0600044-001	QC1	Electrical Conductivity @ 25°C	1 µS/cm	158	158	0.0
EP0600045-005	Anonymous	Electrical Conductivity @ 25°C	1 µS/cm	184	185	0.0
EA015: Total Dissolved So	lids			•	•	
EA015: Total Dissolved S	olids - ( QC Lot: 158936 )			mg/L	mg/L	%
EP0600044-001	QC1	Total Dissolved Solids @180°C	1 mg/L	300	310	3.4
EP0600045-003	Anonymous	Total Dissolved Solids @180°C	1 mg/L	1140	1080	6.3
ED037P: Alkalinity by PC T	itrator			•	•	
ED037P: Alkalinity by PC	Titrator - ( QC Lot: 158783 )			mg/L	mg/L	%
EP0600044-001	QC1	Hydroxide Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
		Carbonate Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
		Bicarbonate Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
		Total Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
EP0600045-005	Anonymous	Hydroxide Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
		Carbonate Alkalinity as CaCO3	1 mg/L	<1	<1	0.0
		Bicarbonate Alkalinity as CaCO3	1 mg/L	4	3	0.0
		Total Alkalinity as CaCO3	1 mg/L	3	10	108
ED038A: Acidity						
ED038A: Acidity - ( QC Lo	t: 158791 )	· · · · · · · · · · · · · · · · · · ·		mg/L	mg/L	%
EP0600044-001	QC1	Acidity as CaCO3	1 mg/L	64	60	5.5
EP0600045-003	Anonymous	Acidity as CaCO3	1 mg/L	76	75	0.0
ED040F: Dissolved Major A	Anions					



ALS
LS Environmental

	DNS BRINCKERHOFF AUST P/L	Work Order : EP060		Page Number : 3 of		(ALS)
roject : 214516	70	ALS Quote Reference : EN/008/	/05	Issue Date : 13		s Environmen
latrix Type: WATER				i		y Duplicates (DUP) Re
Laboratory Sample ID	Client Sample ID	Analyte name	LOR	Original Result	Duplicate Result	RPD
ED040F: Dissolved Major				1		
-	r Anions - ( QC Lot: 158938 )			mg/L	mg/L	%
EP0600044-001	QC1	Sulphate as SO4 2-	1 mg/L	3	3	0.0
EP0600045-004	Anonymous	Sulphate as SO4 2-	1 mg/L	27	20	28.9
D045G: Chloride Discret	e analyser			_		
ED045G: Chloride Discre	ete analyser - ( QC Lot: 159122 )			mg/L	mg/L	%
EP0600038-001	Anonymous	Chloride	1.0 mg/L	<1.0	<1.0	0.0
EP0600045-003	Anonymous	Chloride	1.0 mg/L	80.9	89.9	10.5
G005T: Total Metals by I	CP-AES			•		
EG005T: Total Metals by	ICP-AES - ( QC Lot: 158789 )			mg/L	mg/L	%
EP0600044-001	QC1	Aluminium	0.10 mg/L	0.88	0.96	8.7
		Iron	0.05 mg/L	3.45	3.78	9.2
EP0600045-004	Anonymous	Aluminium	0.10 mg/L	56.2	55.1	2.1
		Iron	0.05 mg/L	1.85	1.81	2.4
EG020F: Dissolved Metals	s by ICP-MS					
EG020F: Dissolved Meta	Is by ICP-MS - ( QC Lot: 159024 )			mg/L	mg/L	%
EP0600044-001	QC1	Aluminium	0.01 mg/L	0.78	0.80	1.4
		Arsenic	0.001 mg/L	<0.001	<0.001	0.0
		Cadmium	0.0001 mg/L	0.0001	0.0001	0.0
		Chromium	0.001 mg/L	0.001	0.001	0.0
		Manganese	0.001 mg/L	0.016	0.016	0.0
		Nickel	0.001 mg/L	0.003	0.003	0.0
		Selenium	0.010 mg/L	<0.003	<0.000	0.0
		Zinc	0.005 mg/L	0.038	0.036	6.0
		Iron	0.05 mg/L	4.14	4.14	0.0
EP0600045-004	Anonymous	Aluminium	0.01 mg/L	1.58	1.61	1.7
		Arsenic	0.001 mg/L	0.001	0.001	0.0
		Cadmium	0.0001 mg/L	<0.0001	<0.0001	0.0
		Chromium	0.001 mg/L	0.001	0.002	0.0
		Manganese	0.001 mg/L	0.010	0.010	0.0
		Nickel	0.001 mg/L	<0.001	<0.001	0.0

ALS
<u>LS Environmenta</u>

#### PARSONS BRINCKERHOFF AUST P/L : EP0600044 : 4 of 8 Client Work Order Page Number : 2145167D EN/008/05 : 13 Jan 2006 Project : ALS Quote Reference : Issue Date A Matrix Type: WATER Laboratory Duplicates (DUP) Report Laboratory Sample ID Client Sample ID Analyte name LOR Original Result Duplicate Result RPD EG020F: Dissolved Metals by ICP-MS - continued mg/L % EG020F: Dissolved Metals by ICP-MS - ( QC Lot: 159024 ) - continued mg/L EP0600045-004 Anonymous Selenium 0.010 mg/L < 0.010 <0.010 0.0 Zinc 0.005 mg/L < 0.005 < 0.005 0.0 0.54 4.7 Iron 0.05 mg/L 0.51 EK055G: Ammonia as N by Discrete Analyser EK055G: Ammonia as N by Discrete Analyser - ( QC Lot: 159016 ) mg/L mg/L % EP0600044-001 QC1 Ammonia as N 0.010 mg/L 0.018 0.022 20.0 EP0600045-004 Anonymous Ammonia as N 0.010 mg/L 0.861 0.848 1.5 EK085M: Sulphide as S2-% EK085M: Sulphide as S2- - ( QC Lot: 159045 ) mg/L mg/L EP0600044-001 QC1 Sulphide as S2-<0.1 <0.1 0.0 0.1 mg/L EP0600045-003 Anonymous Sulphide as S2-0.1 mg/L 0.4 0.4 0.0

## Quality Control Report - Method Blank (MB) and Laboratory Control Samples (LCS)

The quality control term **Method / Laboratory Blank** refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC type is to monitor potential laboratory contamination. The quality control term **Laboratory Control Sample (LCS)** refers to a known, interference free matrix spiked with target analytes or certified reference material. The purpose of this QC type is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of actual laboratory data. Abbreviations: LOR = Limit of reporting.

#### Matrix Type: WATER

#### Method Blank (MB) and Laboratory Control Samples (LCS) Report

		Method blank	Actual	Results	Recovery Limits		
		result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits	
Analyte name	LOR			LCS	Low	High	
EA005P: pH by PC Titrator			-				
EA005P: pH by PC Titrator - ( QC Lot: 158784 )		pH Unit	pH Unit	%	%	%	
pH Value	0.01 pH Unit		4.00	100	70	130	
	0.01 pH Unit		7.00	100	70	130	
EA010P: Conductivity by PC Titrator							
EA010P: Conductivity by PC Titrator - ( QC Lot: 158785 )		µS/cm	μS/cm	%	%	%	
Electrical Conductivity @ 25°C	1 µS/cm		4000	102	70	130	
	1 µS/cm	<1					
EA015: Total Dissolved Solids							
EA015: Total Dissolved Solids - ( QC Lot: 158936 )		mg/L	mg/L	%	%	%	
Total Dissolved Solids @180°C	1 mg/L		2000	98.2	70	130	
	1 mg/L	<1					
ED037P: Alkalinity by PC Titrator							
ED037P: Alkalinity by PC Titrator - ( QC Lot: 158783 )		mg/L	mg/L	%	%	%	
Total Alkalinity as CaCO3	1 mg/L		200	104	70	130	
ED038A: Acidity							
ED038A: Acidity - ( QC Lot: 158791 )		mg/L	mg/L	%	%	%	
Acidity as CaCO3	1 mg/L		100	102	70	130	
ED040F: Dissolved Major Anions							
ED040F: Dissolved Major Anions - ( QC Lot: 158938 )		mg/L	mg/L	%	%	%	
Sulphate as SO4 2-	1 mg/L	<1					
ED045G: Chloride Discrete analyser		•	•		•		
ED045G: Chloride Discrete analyser - ( QC Lot: 159122 )		mg/L	mg/L	%	%	%	
Chloride	1 mg/L		250	99.9	70	130	
	1.0 mg/L	<1.0					



ALS
LS Environmental

Client : PARSONS BRINCKERHOFF AUST P/L	Work Order	: EP0600044		Page Number : 6 of	8	(ALS)
Project : 2145167D	ALS Quote Reference	: EN/008/05		Issue Date : 13 J	lan 2006 🛛 🔒 🔒	S Environmenta
Matrix Type: WATER				Method Blank	(MB) and Laboratory Cor	ntrol Samples (LCS) Repor
		Method blank	Actual	Results	Recov	ery Limits
		result	Spike concentration	Spike Recovery	Dynamic R	ecovery Limits
Analyte name	LOR			LCS	Low	High
EG005T: Total Metals by ICP-AES - continued			•	1	1	-
EG005T: Total Metals by ICP-AES - ( QC Lot: 158789 )		mg/L	mg/L	%	%	%
Aluminium	0.1 mg/L		1.0	96.1	70	130
	0.10 mg/L	<0.10				
Iron	0.05 mg/L		1.00	93.2	70	130
	0.05 mg/L	<0.05				
EG020F: Dissolved Metals by ICP-MS						
EG020F: Dissolved Metals by ICP-MS - ( QC Lot: 159024 )		mg/L	mg/L	%	%	%
Aluminium	0.01 mg/L		0.5	104	70	130
	0.01 mg/L	<0.01				
Arsenic	0.001 mg/L		0.1	99.4	70	130
	0.001 mg/L	<0.001				
Cadmium	0.0001 mg/L		0.1	95.8	70	130
	0.0001 mg/L	<0.0001				
Chromium	0.001 mg/L		0.1	99.3	70	130
	0.001 mg/L	<0.001				
Iron	0.05 mg/L		0.5	93.4	70	130
	0.05 mg/L	<0.05				
Manganese	0.001 mg/L		0.1	103	70	130
	0.001 mg/L	<0.001				
Nickel	0.001 mg/L		0.1	97.8	70	130
	0.001 mg/L	<0.001				
Selenium	0.01 mg/L		0.1	93.4	70	130
	0.010 mg/L	<0.010				
Zinc	0.005 mg/L		0.1	98.3	70	130
	0.005 mg/L	<0.005				
EK055G: Ammonia as N by Discrete Analyser						
EK055G: Ammonia as N by Discrete Analyser - ( QC Lot: 159016 )		mg/L	mg/L	%	%	%
Ammonia as N	0.01 mg/L		1	117	70	130
	0.010 mg/L	<0.010				
EK085M: Sulphide as S2-						
EK085M: Sulphide as S2 ( QC Lot: 159045 )		mg/L	mg/L	%	%	%
		····9/ =				

ALS
LS Environmenta

Client Project	:	PARSONS BRINCKERHOFF AUST P/L 2145167D	Work Order ALS Quote Reference	:	EP0600044 EN/008/05		Page Number : 7 of Issue Date : 13 J		(ALS) S Environmental
Matrix Ty	pe: WA	ITER					Method Blank		trol Samples (LCS) Report
					Method blank	Actual	Results	Recove	ery Limits
			1	1	result	Spike concentration	Spike Recovery	Dynamic Re	covery Limits
Analyte	name		LOR				LCS	Low	High
EK085M:	Sulph	ide as S2 continued							
EK085N	I: Sulp	hide as S2 ( QC Lot: 159045 ) - continued			mg/L	mg/L	%	%	%
Sulphic	de as S	2-	0.10 mg/L			0.50	112	70	130
			0.1 mg/L		<0.1				

Client	:	PARSONS BRINCKERHOFF AUST P/L	Work Order	:	EP0600044	Page Number	: 8 of	8 <b>(ALS)</b>
Project	:	2145167D	ALS Quote Reference	:	EN/008/05	Issue Date	: 13 J	Jan 2006 ALS Environmental

## Quality Control Report - Matrix Spikes (MS)

The quality control term **Matrix Spike (MS)** refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC type is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQO's). 'Ideal' recovery ranges stated may be waived in the event of sample matrix interferences. - Anonymous - Client Sample IDs refer to samples which are not specifically part of this work order but formed part of the QC process lot. *Abbreviations:* **LOR** = *Limit of Reporting,* **RPD** = *Relative Percent Difference.* 

#### Matrix Type: WATER

waunt Type. WATER				_			IIIC	
					Actual	Results	Recove	ery Limits
					Sample Result	Spike Recovery	Statio	c Limits
Analyte name	Laboratory Sample ID	Client Sample ID	LOR	Spike Concentration		MS	Low	High
ED045G: Chloride Discret	te analyser							
ED045G: Chloride Discr	ete analyser - ( QC Lot: 159122			mg/L	mg/L	%	%	%
Chloride	EP0600044-002	PZ1	1 mg/L	2500	320	91.8	70	130
EG005T: Total Metals by	ICP-AES							
EG005T: Total Metals by	y ICP-AES - ( QC Lot: 158789 )			mg/L	mg/L	%	%	%
Aluminium	EP0600044-002	PZ1	0.1 mg/L	1.0	4.12	* Not Determined	70	130
Iron			0.05 mg/L	1.00	8.17	* Not Determined	70	130
EG020F: Dissolved Metal	Is by ICP-MS					_		
EG020F: Dissolved Meta	als by ICP-MS - ( QC Lot: 159024	•)		mg/L	mg/L	%	%	%
Arsenic	EP0600044-001	QC1	0.001 mg/L	0.2	<0.001	102	70	130
Cadmium			0.0001 mg/L	0.05	0.0001	100	70	130
Chromium			0.001 mg/L	0.2	0.001	96.7	70	130
Manganese			0.001 mg/L	0.2	0.016	100	70	130
Nickel			0.001 mg/L	0.2	0.003	98.7	70	130
Zinc			0.005 mg/L	0.2	0.038	101	70	130
EK055G: Ammonia as N I	by Discrete Analyser							
EK055G: Ammonia as N	l by Discrete Analyser - ( QC Lo	:: 159016 )		mg/L	mg/L	%	%	%
Ammonia as N	EP0600044-002	PZ1	0.01 mg/L	1	<0.010	111	70	130

Matrix Spike (MS) Report



CLIEN	T: PB							ATORY B		9.4 ·						
POSTA	ALADDRESS: \ A	turen .	54	Sisteria	· · · ·		SAMPL		AIGHIN	J						ALS)
SEND	REPORT TO: Julie F	alven se		Sobrean CE TO: EDED BY: O 49-05			PHONE		ſ	AX:	E	EMAIL :			Er	vironmenta
DATA I	NEEDED BY: Friday	13th Jabl	EPORT NE	EDED BY:						RD:	FAX:		MAIL:			
PROJE	ECT ID:21451670	QUOTE NO.	PE-	049-05			QC LEV				CS2: 🗍	QCS3:		1: 🗌	Ó	2
P.O. N		COMMENTS	S/SPECIAL	HANDLING/STORAGE OR D	ISPOSAL	_:		· · · ·			AN	ALYSIS RE	QUIRED	C		
	FOR LAB USE ONLY							/ /		1 1	/ / د		18/01	18/1	7Ĵ.,	P
COOL	ER SEAL	Noh	e to	m around					/ /	5	.	/ / .	50	H	t cn/	4
′es	No									/m	'   !			\$1 .7.	NO	1
	1 Intact							-/97/	1/2		~//		<u>z z z</u>	07 -	$\mathbb{V} \in$	<b>V</b> ./
OOL	ER TEMP. deg. C							/¥/c	デ/ ・・・/	' LY E	~/~/~/	5/50/3	1 2 3	7.07		
	SAMPLE D		<u> </u>	*CONTAINER D	ATA		a- /-				' 7 7	10	7/4/2	5/5/1	9	
	SAMPLE ID	MATRIX DAT	FE TIME	TYPE & PRESERVATIVE	NO.	pН	μ.	$\square$	7	1-1-	11	-/10/		/ <del>\</del> \ \	<b>-</b> /	/ NOTES
2C	-1 23	10.	1 1200	a NA												Dissoluted Re
アモ	1 23		1	1										,		total n
· 2	2×3(1)												tol	2		Green
	3×3(2)										ALSE	Enviror	nmental			Purple
2	4 * 3									i.						Yellow
<u>z</u>			-+-{-									1 ark O	rdel			[sonow
7	5 × 3	+ $+$ $+$									V	VUINO	0044	÷.		
1	6 * 3	4	47	4							F	P060	10044			
										·····				∭		
	· · · · · · · · · · · · · · · · · · ·													IM		
											- WWWW	Report Version:	AliquotLabel 1.02 1-8-9209-76	55		
											Telep	hone: 6	1-0-020			
	· · · · · · · · · · · · · · · · · · ·		-								- 					
	···· ·			· · · · · · · · · · · · · · · · · · ·												· · · · · · · · · · · · · · · · · · ·
		DELL	NQUISHED		<u>.</u>			1			ECEIVED E					HOD OF SHIPME
	11 8.	· · · · · · · · · · · · · · · · · · ·	-		D			Cur						וס(ואם		
		mm-	5				NAME:			CALAC	3B				CON	SIGNMENT NOTE
)F:	PB				TIME: 1	Znon		A	-5E					6.40		
IAME	:				DATE:		NAME:						DATE:		TRA	NSPORT CO. NA
DF:					TIME:		OF:						TIME:			

¥.

## AUSTRALIAN LABORATORY SERVICES P/L

WHITE - LAB COPY YELLOW - CUSTOMER COPY PINK - BOOK COPY